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A Modified Normalized LMS Algorithm
Based on a Long-Term Average of the Reference Signal Power
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Abstract

This paper proposes a modified normal-
ized LMS algorithm based on a long-term aver-
age of the reference input signal power. The
reference input signal power for normalization
is estimated by using two leaky integrators with
a short and a long time constants. Computer
simulation results compare the performance of
the proposed algorithm with some previously
proposed adaptive-step algorithms. The pro-
posed algorithm converges faster than the con-
ventional adaptive-step algorithms. Almost
30dB of the ERLE, which is comparable to the
conventional algorithms, is achieved in noisy
environments.
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1. Introduction

Hands-free telephones, which make con-
versation without a hand-set possible, have
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become more popular because of their con-
venience. Recently, some mobile communica-
tion systems have introduced hands-free func-
tion for safety as well as convenience. In a
conversation without a hand-set, acoustic
echoes generated by speech propagation from a
loudspeaker to a microphone disturb comfort-
able conversations. Echo cancellers are widely
used to reduce such echoes.

Adaptive filters based on stochastic gradi-
ent algorithms[1-7] are good candidates for
echo cancellers because of their simplicity.
The LMS (least mean square) algorithm[1] and
the learning identification method (known as
the normalized LMS algorithm, NLMS) (2, 3]
are the most popular examples. The LMS algo-
rithm is not suitable for non-stationary signals
because its convergence characteristics heavily
depend on the reference input signal power.
Thanks to the normalization by the reference
input signal power, the convergence speed of
the NLMS algorithm is independent of the ref-
erence signal power.

The normalization in the NLMS algo-
rithm, however, makes the NLMS algorithm
not applicable to noisy environments such as
mabile hands-free telephones. The influence of
the additive noise becomes too large if the ref-
erence input signal power is small|4]. On the
other hand, the LMS algorithm, which can be
regarded as the NLMS algorithm normalized
by an infinite-term average power, is robust



against noise. These facts suggest that the per-
formance of the NLMS algorithm depends on
the power estimation procedure. However, the
influence of the power for normalization on the
convergence characteristics has not been clari-
fied.

This paper proposes a modified normal-
ized LMS algorithm based on a long-term aver-
age of the reference input signal power. The
signal power for normalization is estimated by
using two leaky integrators with a short and a
long time constants. In Section 2, the LMS
algorithm, the NLMS algorithm and their prob-
lems are described. Section 3 examines the
influence of the reference input power estima-
tion on the convergence characteristics of the
NLMS algorithms and show that the NLMS
algorithm becomes robust against noise or even
unstable depends on a power estimation param-
eter. The proposed algorithm with a modified
power estimator is described in Section 4. The
performance of the proposed algorithm are
compared with three previously proposed adap-
tive-step algorithms [5-7] in Section 5.

2. LMS algorithm and NLMS algorithm

Assuming an N-tap FIR adaptive filter,
the filter output $(¢) at time ¢ is calculated by
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where W(t) is the filter coefficient vector, X(t)
is the reference input signal vector and a super-
script T denotes transpose of a vector. X(t)
contains the latest N samples of the reference
input signal x(¢) and is given by

XO=[x@Ox(@t -1 x(t =N+ D]". (2)
W(¢) containg N filter coefficients and is so
updated as to minimize the error signal

e(t) = y(t) - 9(1)

where y(¢) is the desired signal.
In the LMS algorithm, W(¢) is adapted by
W +1) = W) + s e(X(0). (4)

(3)

A constant 4y is so-called step-size which
controls the convergence characteristics. For
stationary reference input signals, the filter
coefficients will converge if
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where o} is the variance of the reference input
signal x(¢).

The NLMS algorithm uses a time-varying
parameter rather than a fixed parameter g, ;.
The filter coefficients are updated by

Hnmse()X (1)
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where 1y, 1S a positive constant and P x(t)is
the reference input signal power. The range of
Mnims Which ensure convergence is indepen-
dent of x(¢) and is given by

(6)

0 < pnims < 2. (7

The reference input signal power P () can be
calculated either by a squared norm|[2|

1
Px() =+ X" ()X(@) (8)

or by a leaky integration[3]
Px(t) = aPx(t - 1)+ (1 - a)x*@). (9)

A positive constant @ controls the time constant
of leaky integration. The LMS algorithm can
be regarded as a special case of (9) where the
time constant is infinite. The step-size 1y p¢
becomes
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which is derived by comparison of (4) and (6).

Hims = (10)

Both the LMS algorithm and the NLMS
algorithm have their own problems. The LMS
algorithm is not applicable if the reference
input signal power is unknown because selec-
tion of s,y requires a knowledge of the signal
power. A most serious problem .of the NLMS
algorithm is the influence of the additive noise.
Using the optimum filter coefficient vector H



and the additive noise n(t), adaptation of W(¢)
is given by

W +1)=W({)
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Px(1)

HUnmsn()X(1)
Px()

Normalization by P y(¢) makes the contribution
of the coefficient error H — W(¢) to adaptation
independent of Py(¢). However, the influence
of the noise n(t) becomes too large for small
Px(t). This is why the NLMS algorithm can-
not update filter coefficients correctly if the ref-
erence input signal is non-stationary and the
additive noise exists{4]. Similarly, adaptation
for the LMS algorithm becomes

Wi +1)=W({)

ey
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1 s () X(2). (12)

Since s 1s selected so small as to satisfy (5)
for largest o, the influence of the additive
noise n(t) on the LMS algorithm is much
smaller than that on the NLMS algorithm.

Using a leaky integration, the behavior of
the NLMS algorithm can be controlled by the
constant a. A small a makes the behavior sim-
ilar to that using a squared norm. A behavior
similar to the LMS algorithm can be obtained if
a approaches 1.0. However, the influence of
the power estimation on the convergence char-
acteristics of the NLMS algorithm has not been
clarified.

3. Influence of Power Estimation in NLMS
Algorithm

Convergence characteristics of the NLMS
algorithm has been examined for several power
estimation conditions. The NLMS algorithm
based on squared norm (NLMS/Norm), the
NLMS algorithm based on leaky integration
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Fig. 1. Influence of power for normalization.

(NLMS/Leak) and the LMS algorithm have
been compared by computer simulations for
acoustic echo cancellation in mobile hands-free
telephones. The echo and the additive noise
have been recorded in a car. The reference
input signal and the noise are a female speech
and an idling noise by a diesel engine. The
maximum echo-to-noise ratio (ENR) is about
20dB. The number of taps is 512. The step
sizes pyps and uy;pe have been optimized in
order to achieve largest ERLE (Echo Return
Loss Enhancement). g ys and gy ms are cho-
sen as 1.25x 107'° and 0. 1, respectively.

Figure 1 compares the ERLE of the LMS
algorithm and the NLMS algorithm for several
power estimation parameters. The perfor-
mance of the LMS algorithm is superior than
NLMS/Norm. The ERLE of NLMS/Leak
depends on the constant a; better ERLE is
achieved with larger a. The convergence char-
acteristics of NLMS/Leak with a large a is sim-
ilar to the LMS algorithm, which can be con-
sidered as NLMS/Leak with infinite time con-
stant. Though larger a provides better perfor-
mance, too large a makes NLMS/Leak unsta-
ble. Figure 1 shows that NLMS/Leak is unsta-
ble if 0.99992 < a; the ERLE for a =0.99992
becomes —oo around 2 seconds.

The estimated powers NP y(t) are shown
in Fig. 2. The power for the LMS algorithm
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Fig. 2. Power for normalization.

can be considered as a constant and derived
from (10) as

NP (1) = Hiems )
Hims

(13)

For large a, the tracking speed of the leaky
integration becomes slower and the estimated
power keeps larger value even in no-speech
periods. This prevents normalization by too
small power and enhances robustness against
the additive noise. On the other hand, too
small estimated power in large-power periods
makes LMS/Leak unstable. However, the con-
dition to select a has not been clarified.

4. NLMS Algorithm Based on Long-Term
Average Power

For robustness against the additive noise,
NLMS/Leak with a larger time constant is a
good candidate if convergence is guaranteed.
In order to ensure convergence of NLMS/Leak,
the reference input signal power Py (¢) should
satisfy
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NPx(t) ~ No? (14
The lower limit on P, (¢) is
2
o)
P xpu(t) = ff%l (15)

which can be smaller than 6. If P,(r) does

not satisfy (15), Px(¢) should be replaced by an
appropriate value, e.g. a lower threshold
Py, (¢). For non-stationary signals, 6% should
be estimated by another power estimator with
fast racking capability.

Proposed algorithm uses two power esti-
mators with different tracking speed for both
robustness against the noise and stability. The
short term average power Py(t) is calculated
by

Pys(t+1) = a;Pxs(t) + (1 - a)x*(t). (16)

A conditional leaky integrator with a long time
constant calculates the reference input signal
power Py, (¢). To avoid convergence of Py, (¢)
to zero, Py (1) is updated only if
C1Px (1) < Pxs(t) by

Py(t+1)=a, Py, )+ —a)x¥0).(17)

Constants a; and a; are chosen to satisfy
O<a,<a, <1. A constant ¢, for the thresh-
old should be 0 <c¢; < 1. Then, Py, (t+1) is
compared with the lower threshold Th, (¢). If
Py (t+1) <Th;(t), Py, (t+1) is replaced by
Thy(¢). The threshold Th, (¢) is calculated by

Thy(t) = coPxs(2). (18)

where ¢, is a positive constant which satisfies
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Using Py, (t) calculated by this procedure, the
filter coefficients W(¢) are updated in the same
manner as the NLMS algorithm. Note that the
proposed algorithm requires only a small num-
ber of additional computation to the NLMS
algorithm. In some applications such as acous-
tic echo cancellers, a large number of taps over
several hundreds makes the total amount of
computation for the proposed algorithm almost
same as the NLMS algorithm.

< Cy. (19)

S. Computer Simulations

Computer simulations have been carried
out for the same manner as in Section 3.
Another noise recorded in a moving car, which
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Fig. 6. Echo and Noise Power.

contains an engine noise, a wind noise and also
brake noises, has also been used. Figure 6
shows the echo power and the noise power.
Noisel is a noise in an idle state and Noise2 is
that in a moving state. The echo is larger than
Noisel, while the ENR for Noise2 is almost
always less than 0 dB.

In the first simulation, the proposed algo-
rithm has been compared with the LMS algo-
rithm, NLMS/Norm and NLMS/Leak. The

parameters have been chosen as
fims = 1.25 x 10" upys = 0.1, @ =0.9999,
a;,=0.99, a; =0.99995, ¢,;=0.001 and
¢, =0.05. Note that the parameter

a=0.99995 makes NLMS/Leak unstable.
Figure 3 compares the ERLE for Noisel.
Thanks to the introduction of a lower limit on
Px(t), the proposed algorithm is stable for
large a; and achieves superior echo reduction
performance. From the beginning of the
speech to 10 seconds, the ERLE of the pro-
posed algorithm is larger than that of the others
by almost 5dB.

The following simulations compare the
proposed algorithm with three adaptive-step
algorithms: the normalized stochastic gradient
algorithm with a gradient adaptive and limited
step-size  (NSG-GALS)[5], the time-varying
step-size  NLMS (TVS-NLMS){6], and an
adaptive step-size based on the reference signal

Noise1
35 . . .
Proposed ——
30 | NLMSAeak -
NLMS/Norm -
LMS —-
o
2,
W
-
[
w
0 5 10 15 20 25 a0 a5
Time [sec]
Fig. 3. Performance comparison
with LMS and NLMS.
Noise1
30 .
@
k=2
w
-
x
w &
=T Proposed -— 4
AS/ANP -
T NSG-GALS - ]
TVS-NLMS -
-15 |
-20 . . . ) . '
0 5 10 15 20 25 30 a5

Time [sec]
Fig. 4. Performance comparison
with adaptive-step algorithms.

and the noise power (AS/RNP)[7]. The ERLE
has been examined for both Noisel and
Noise2. The parameters have been optimized
for Noisel and have been chosen as u, =0.1,
p=1.0x10", a=2.0x107 and g = 0.0001
for NSG-GALS, p=0.01 and £=1.0x10°
for TVS-NLMS and #;, =0.2 and « = 50.0 for
AS/RNP.

Figure 4 compares the ERLE of those four
algorithms for Noisel. The proposed algo-
rithm converges faster than the conventinal
algorithms. From 2 seconds to 10 seconds, the
proposed algorithm achieves the ERLE almost
5dB larger than three adaptive-step algorithms.
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Fig. 5. ERLE for larger noise.

The final ERLE of the proposed algorithm is
almost 30dB, which is comparable with
AS/RNP and is more than 10dB larger than
NSG-GALS and TVS-NLMS.

The ERLE for Noise2 is shown in Fig. 5.
The proposed algorithm achieves more than
15dB of the ERLE. The ERLE is almost same
as AS/RNP and more than 20dB larger than
NSG-GALS and TVS-NLMS.

6. Conclusion

A modified NLMS algorithm based on a
long-term average power has been proposed.
The reference input signal power for normal-
ization is estimated by using two leaky integra-
tors with a short and a long time constants. A
new power estimator in the proposed algorithm
guarantees stability and enhances robustness
against the additive noise. The amount of com-
putation required for the proposed algorithm is
almost same as the NLMS algorithm. Simula-
tion results show that the proposed algorithm
reduces echoes by almost 30dB in noisy envi-
ronments. The convergence speed and the echo
reduction performance are superior (o some
previously proposed adaptive-step algorithms.
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