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Convergence Analysis of a Stereophonic Acoustic Echo Canceller Part I:
Convergence Characteristics of Tap Weights
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ABSTRACT

This paper analyzes convergence charac-
teristics of a stereophonic acoustic echo can-
celler for strongly cross-correlated input sig-
nals. One of the two reference input signals
to the adaptive filters is assumed to be a
delayed and attenuated version of the other
signal. Convergence of tap weights and the
convergence condition for mean tap-weights
are analyzed. Analytical results show that a
part of the tap weights does not converge to
their optimum value, i.e., the impulse
response of the echo paths. Computer simu-
lation results confirm the analyses.
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1. Introduction

Echo cancellers are used to reduce echoes
in a wide range of applications, such as TV
conference systems and hands-free tele-
phones. To realistic TV conference systems,
multi-channel audio, at least stereophonic, is
essential. For stereophonic teleconference
systems, stereophonic acoustic echo can-
cellers have been studied[1-6].

In stereophonic echo cancellers, the influ-
ence of strong cross-correlation between two
input signals is largest problem[6, 7]. How-
ever, convergence of stereophonic echo can-
cellers for cross-correlated input signals has
not been studied in details. Reported conver-
gence analysis is only for a very simple case
in which one of the two reference input sig-
nals to the adaptive filters is a delayed ver-
sion of the other signal[6]. The mean
squared error (MSE) and the convergence
condition of the MSE have not been ana-
lyzed.

This paper investigates convergence char-
acteristics of a stereophonic acoustic echo
canceller for strongly cross-correlated input
signals. One of the two reference inputs is
assumed to be a delayed and attenuated ver-
sion of the other. Convergence of tap
weights, the convergence condition for mean
tap-weights are analyzed. Computer simula-
tion results will validate the analyses. Part II
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Fig. 1. Stereophonic teleconferencing
using echo canceller.

will analyze the MSE, the convergence con-
dition of the MSE, and the error surface[8].
The effects of dither insertion will also be
shown.

2. Stereophonic Acoustic Echo Canceller

Let us concentrate on a stereophonic
acoustic echo canceller based on linear com-
bination[1]. Figure 1 depicts a schematic
block diagram of a stereophonic teleconfer-
encing using this echo canceller. The echo
canceller in Room B consists of four adaptive
filters corresponding to four echo paths from
two loudspeakers to two microphones. Each
adaptive filter estimates the impulse response
of the corresponding echo path.

The input signal vector x™ is defined by

(n)
m _| XL 1
x [w} M
where n is the time index. x™ consists of the
input signal vectors for the left channel, x,™,
and that for the right, xz™. The subscripts L
and R denote "Left" and "Right" channels,
respectively. Tap-weight matrix W™ is given
by
(n) (n)
n Wi WiR
w( ) :[W (n) (")] (2)
RL

where WLL("), WRL(")’ WLR(n) and WRR(n) are tap-
weight vectors for four adaptive filters.
Using the echo-path impulse-response matrix

H defined by

H=[h"L "LR], (3)

hre  hrr
the tap-weight error matrix @™ is given by
0™ =H-W®. C))

The error vector ™ is calculated by

(n) _ er(n)
¢ [ek(n)]

= @I xm (5)

where [-]7 denotes transpose of a matrix [-].

Assuming the LMS (Least Mean
Squares) algorithm[9], the tap-weight matrix
w® is updated by

T T
wirt) — w4 ﬂx(n)(e(n) +p® ). (6)

In (6), a positive constant u is a step-size
which controls the convergence. v™ is an
additive noise vector defined by

o [ ”L‘")]. %

vr(n)

The additive noise v is assumed to be inde-
pendent of the input signal x™.

3. Convergence Analysis of Averaged Tap-
Weight Error

In the following analysis, a single-talker
case is assumed in which one of the atten-
dants in Room A is speaking. Both signals
sent to Room B contain the same speech sig-
nal. Thus cross-correlated signals are gener-
ated. Note that such a situation is commonly
encountered in many teleconferences.

The relation between two input signals is
given by

xR(n) = axL("_”d) (8)

where n, is a time delay between x,™ and
xx™, a is an attenuation factor. x™ is also
assumed to be zero mean, white Gaussian
process with a variance of ox” and to be inde-
pendent of ©™. The independent assumption



of x™ and ©™ is common in many analyses
and is valid if the step size x is small[9].

The ensemble average of the tap-weight
error matrix defined by

M® = E[e™] %

will be analyzed. Updating equation for @™
is derived from (4), (5), and (6) as

T T
@(n+l) - @(n) _ ,ux(")x(”’ @(n) _#x(n)v(n) . (10)

By taking an ensemble average of (10), dif-
ference equation for M™ becomes

M(n+l) = (IZN _ #R)M(n) (1 1)

where Ly is a 2N x2N unit matrix, R is an
"extended" covariance matrix defined by

R = E[x™x™". (12)

R consists of both the auto-covariance matri-
T T
ces, E[x;™x, ™1 and E[xz™xg™"], and the
. T
cross-covariance E[x; ™ xg™" 1.

For input signals shown in (8), R
becomes

ox’l,, 0 0 0
R= 0 UXZIN—nd ﬂd’leN_,,d 0
0 aoleN_,,d azaleN.,,d 0

0 0 0 a*ox’l,,

(13)

where 0 is a zero matrix. Let us concentrate
on a 2(N —n,) x 2(N - n,) matrix located in the
center of R, i.e.,

ox’l acy’lIy
N-n,4 X -ng 14
aa'leN_,,d a20x2l~_,,d ] (14)
It is clear that R’ is singular because multiply-
ing the upper row of (14) by « generates the

lower row. Two rows are linearly dependent.
By introducing an orthonormal matrix

L, 0 0 0

1 a

0 —=1Iy_ R e— I 0

P= Vita M «/1l+_¢12""" L (15)
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R can be diagonalized as

A =PRP™!
2
ox lnd 0 0 0
0 (1+d)ox’ly.,, O 0
0 0 0 o | (16)
0 0 0 dlox’l,,

Derivation of P is given in Appendix A.
Obviously, the eigenvalues of R are o2,
(1+aoy?, a’ox?, and 0. Since R is singular,
the averaged tap-weight error M can not con-
verge to 0 even if the convergence condition
is satisfied.

Introduction of a new variable

M” = pM™ (17)
leads to a simplified difference equation as

M™P = 1,y - uAM™. (18)

Since (Iy - zA) is diagonal, M®™ can easily be
solved as

M(") — (IQN _ ﬂA)nM(O)

al"l,,d 0 0 0
| o "Iy, 0 0 - (0)

1o 0 Iv., O

0 0 0 ',
(19)
where a;, a, and «a; are defined by

o, =1- poy® (20)
ay =1—-p(l+a*)oy? 21
oy =1- pa*oy’. (22)

The solution for M™ is derived from (17) and
(19) as

M® = pIM®

= P—l (IZN _ ﬂA)"PM(O)
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Appendix B describes detailed derivation of
(23). Finally, the ensemble average of the
tap-weight matrix is calculated by

E[W™]=H-M". (24)

The convergence condition for the aver-
aged tap-weight error M™ is derived from
(20), (21), (22) and (23). All of &, &, a3
should be 0. The convergence condition is

O<u< (25)

(d+adoy?’
If 4 satisfies this condition, M™ converges to
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(26)

Obviously, the averaged tap-weight error M®
do not converge to 0, i.e., the tap-weight
matrix W™ do not converge to its optimum
value H. The convergence values depend on
initial value W@, n, and a. If the initial value
of w” is o0, the final tap weights W
becomes

ng

0 ——=Iy, —sIn_p 0
2 nd 2 d
E[w(w)] = l1+a l+a H.

O W gl 0

0 0 0 I,
27

(27) shows that some elements of W,
upper n, elements of w;,;™ and w; ™, and
lower n, elements of wg ™ and wgr™, con-
verge to the optimum. The other elements
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Fig. 2. Tap weights after converge(1).
converge to non-optimum values.

4. Computer Simulations

Computer simulations have been carried
out and their results have been compared
with the analytical results. The number of
taps N was 20. The echo paths were given by

hi; = hgg; = €% sin(0. 37i) (28)

hpri = hig; = €% 5in(0. 47i) (29)

where hyy ;, hpri, hre; and hpg; are the i-th ele-
ment of the echo path vectors h;;, hgg, b
and h, respectively.

The left-channel input signal was white-
Gaussian process with unit variance. Param-
eters a and n, were selected as 0.6 and 4,
respectively. Independent white-Gaussian
noises have been added to the echoes as the
additive noise. The variance of the additive
noise was 0.01, thus the echo-to-noise ratio is
about 25dB. The step size x was settled as
0.01, which satisfies the convergence condi-
tion for the MSE shown in part II [8]. An
average of 1000 independent runs has been
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Fig. 2. Tap weights after converge(2).
calculated.

Averaged tap-weight vectors after conver-
gence are shown in Fig. 2. As shown by the
analysis, 4n, tap weights converge to the
optimum values. However, all the other
weights do not converge to the optimum.
The convergence values agree with analytical
results shown in (27).

Figure 3 depicts convergence characteris-
tics of two averaged tap-weights. Trajecto-
ries for E[w; ,(n)], the second element of
E[w;; ™), and E[wy, s], the sixth element, are
shown. E[wj;,(n)] converges to the optimum
value while E[w;; s} does not. The trajecto-
ries of averaged tap-weights agree with that
derived from (24).

5. Conclusion

A convergence analysis for a stereo-
phonic acoustic echo canceller has been pre-
sented. Convergence of averaged tap-
weights and the convergence condition for
averaged tap-weights have been analyzed for
a single talker case, in which one of the two
reference input signals to the adaptive filters
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Fig. 3. Convergence of tap weights.

is assumed to be a delayed and attenuated
version of the other. Analytical results show
that a part of the tap weights does not con-
verge to their optimum value, i.e., the
impulse response of the echo paths. Com-
puter simulation results confirm the analysis.
Analyses of the MSE, the convergence condi-
tion of the MSE, and the error surface will be
shown in part II. The effects of dither inser-
tion will also be shown.

References

[1] T. Fujii and S. Shimada, "A Note on
Multi-Channel Echo Cancellers," Tech-
nical Reports of IEICE on CS, pp. 7-14,
Jan. 1984 (in Japanese).

[2] M. M. Sondhi and D. R. Morgan,
"Acoustic Echo Cancellation for Stereo-
phonic Teleconferencing," Proc. of
IEEE ASSP Workshop Applied Signal
Processing Audio Acoustics, 1991.

[3] A. Hirano and A. Sugiyama, "A Com-
pact Multi-Channel Echo Canceller
with a Single Adaptive Filter per Chan-
nel," Proc. of ISCAS ’92, pp.
1922-1925, 1992.

[4] Y. Mahieux, A. Gilloire and F. Khalil,
"Annulation d’écho en téléconférence

Stéléophonique,” Proc. Quatorzieme
Colloque GREST]I, pp. 515-518, 1993.

[{5] M. M. Sondhi and D. R. Morgan,
"Acoustic Echo Cancellation for Stereo-
phonic Teleconferencing,” presented at
the 1991 IEEE ASSP Workshop
Applied Singal Processing Audio
Acoustics, News Paltz, NY, 1991.



[6] A. Hirano and A. Sigiyama, "Conver-
gence Characteristics of a Multi-
Channel Echo Canceller with Strongly
Cross-correlated Input Signals — Ana-
lytical Results —," Proc. of 6th DSP
Symposium, pp. 144-149, November
1991.

(71 M. M. Sondhi and D. R. Morgan,
"Stereophonic Acoustic Echo Cancella-
tion — An Overview of the Fundamental
Problem," IEEE SP Letters, vol. 2, no.
8, pp. 148-151, August 1995.

[8] S. Koike and A. Hirano, "Convergence
Analysis of a Stereophonic Acoustic
Echo Canceller Part II: — Mean Squared
Error, Convergence Condition and Error
Surface -," to be appeared in Proc. of
11-th DSP Symposium, November
1996 (in Japanese)

[9] B. Widrow and S. D. Stearns, "Adaptive
Signal Processing,” Englewood Cliffs,
NIJ: Prentice-Hall, 1985.

[10] A. Feuer and E. Weinstein, "Conver-
gence Analysis of LMS Filters with
Uncorrelated Gaussian Data,” IEEE
Trans. ASSP, vol. 33, no. 1, pp.
222-230, February 1978.

Appendix A. Derivation of P

A part of R which requires diagonaliza-
tion, i.e.,

R =[ "leN-na “GXZIN—n,, jl (Al)

2 2.2
aoy IN—n,, a oy IN--n,,

is considered. Diagonalization of R’ can fur-
ther be reduced to diagonalization of 2x2
matrix defined by

2
a a

R - axz[l a } (A2)

The characteristic equation for R” is given
by

det [axz[‘ll :2 ]— AI] =0. (A3)

The eigenvalues are 0, ox*(1+4%). The nor-
malized eigenvectors are derived as

Vi+a?|a

1 1} (Ad)

and

1 [ —a
=] (A3)

Therefore, orthonormal matrix which diago-
nalize (A2) is given by

1 1 a
Ny ?[—a 1} (A6)

Orthonormal matrix P shown in (15) is
derived by expanding (A6).

Appendix B. Derivation of M®

From (17) and (19), the tap-weight error
matrix M®™ is calculated by

M® = pM®
=Py - pAy" M
=P Ly - pAPP'M©

=PIy - uA)"PM©@ (B1)

Calculation of a 2N x 2N matrix P~'(Iy — zA)"P
can be simplified to calculation of 2x2
matrix as

1 1 —a||la” 0 1 a
1+a?|la 1 0 1f|-a 1

1 Pag" -a 1 a
T1+a| axy" 1 -a 1

T1+a a(a"-1) da"+1 (B2)

1 -a2”+a2 a(ag"—l):|

Expanding (B2) leads to (23).



