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Convergence Analysis of a Multi-Channel Acoustic Echo Canceller
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ABSTRACT

This paper analyzes convergence characteristics
of a multi-channel acoustic echo canceller. A general
procedure for analyzing averaged tap-weights and
their convergence condition are shown. As examples
of analyses, convergence for both uncrosscorrelated
reference input signals and crosscorrelated signals are
examined. The tap weights converge to their optimum
values if the input signals are not crosscorrelated.
When the reference input signals are delayed and
attenuated versions of a white noise, the tap weights
do not converge to the optimum values. Computer
simulation results confirm the analyses.
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1. Introduction

Echo cancellers are used to reduce echoes in a
wide range of applications, such as TV conference
systems and hands-free telephones. To realistic TV
conference systems, multi-channel audio, at least
stereophonic, is essential. For multi-channel telecon-
ference systems, multi-channel acoustic echo can-
cellers have been studied[1-6].

In multi-channel echo cancellers, the influence of
strong crosscorrelation between input signals is one of
the most serious problems[6-10]. In order to over-
come this problem, improved echo cancellation

algorithms have been proposed [4-5]. However, con-
vergence of multi-channel echo cancellers for cross-
correlated input signals has not been studied in details.
Reported convergence analysis is only for a two or a
three channel case [6-9].

This paper investigates convergence characteris-
tics of a multi-channel acoustic echo canceller for
arbitrary number of channels, i.e. M channels. Sec-
tion 2 briefly reviews the multi-channel acoustic echo
canceller based on linear combination[1]. A general
procedure for a convergence analysis of this echo can-
celler is formulated in Section 3, followed by detailed
analyses for an uncrosscorrelated signals and a cross-
correlated signals. Computer simulation results will
validate the analyses.

2. Multi-Channel Acoustic Echo Canceller

Let us concentrate on a multi-channel acoustic
echo canceller based on linear combination[1]. Figure
1 depicts a block diagram of an M-channel echo can-
celler. The echo canceller consists of M x M adaptive
filters corresponding to M X M echo paths from M
loudspeakers to M microphones. An adaptive filter
with a tap-weight vector w;; ( i=1,---, M;
j=1,---,M ) estimates the impulse response of an
echo path h;; from i-th loudspeaker to j-th micro-
phone. A superscript (n) denotes the time index.

The input signal vector x™ is defined by
T
£ = [ AT x0T xx;)r] )

where [-]7 denotes the transpose of a matrix [-]. x®
consists of M input signal vectors x,("), each contains
N input samples for an N-tap case. The subscripts i
of x!" denotes the channel number. Tap-weight

matrix W™ is given by
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Using the echo-path impulse-response matrix H
defined by

hiy, hyp - hy
hyy hyy -+ hyy

H=| - R - 3
hyy hya - hym

the tap-weight error matrix @™ is given by

@(n) =H- w(n). (4)

(m

The error vector e'"’ is calculated by

T
e = [el(n) e(n) - eM(n)]

= e(n)Tx(") (5)
e™ consists of M residual echo signals.

Assuming the LMS (Least Mean Squares) algo-
rithm[11], the tap-weight matrix W™ is updated by

T T
w(n+1) — w(n) + ux(n)(e(n) + v(n) ) (6)

In (6), a positive constant u is a step-size which con-

trols the convergence. v is an additive noise vector
defined by

T

v = |:V1(n) Va(n) - - - v,,,(n)] . 7N

The additive noise v™ is assumed to be independent
of the input signal x™.

3. Convergence Analysis of Averaged Tap-Weight
Error

A general procedure to analyze the ensemble
average of the tap-weight error matrix defined by

M® = E[6™] ®)

will be shown. The updating equation for o™ is
derived from (4), (5), and (6) as

QD = @M _ 4y x™ mTgm _ U pONOL ©)
By taking an ensemble average of (9), difference
equation for M® becomes

M(n+1) — (IMN _ ﬂR)M(") (10)

where I,y is a MN X MN unit matrix, R is an
"extended" covariance matrix defined by

T
R=E[x(n)x(n) ). (11)
R consists of both the auto-covariance matrices,
T . T
E[x"x""], and the cross-covariance E [xf”)x(j") ]

(E))
By introducing an orthonormal matrix P which

diagonalizes R, the difference equation for M™
becomes

M = @y — pAM™, (12)

In (12), a new variable M and an eigenmatrix A are
defined by

M = pM™ (13)
and

A=PRP, (14)
respectively.

From (12), the solution of M™ is derived as
M(n) — (IMN _ ﬂA)nM(O) (15)

where M is the initial value of M. (13) and (15)
lead to the solution for the averaged tap-weight M™
given by

M® = pM”
=P Iy — uA)"PM@. (16)
The convergence condition for M® is
O<u< 17
A'max

where A, is the maximum eigenvalue of R. Since
Amax is always less than trace(R),

<ﬂ<m—) (18)

is the sufficient condition for convergence.
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4. Delatiled Analyses for Specific Input Signals

4.1. Uncrosscorrelated Signals

If the input signals x" (i=1,---,M) are not
crosscorrelated, the "extended" covariance matrix R
becomes

R,; O 0
0 Ry 0
R= . . e . A (19)
0 0 M RM‘M

By substituting (19) into (10), M? independent equa-
tions

(n}

(n+1)
m"l = (IN - ,URi,i)m,',j

(i'_'la"'vM;j:]-,“"M) (20)
are derived. In (20), m"" is defined by

i
mf"}) - E[hi.j _ wi,j(")] . 2n

(20) is completely same as the difference equation for
the monaural LMS algorithm. Therefore, if the con-
vergence condition similar to a monaural case is satis-
fied, the averaged tap-weights will converge to their
optimum values.

4.2. Crosscorrelated Signals

In the following analysis, a single-talker case is
assumed in which one talker in the distant room is
speaking. All signals sent to the near-end room con-
tain the same speech signal. Thus, crosscorrelated sig-
nals are generated. Note that such a situation is com-
monly encountered in many teleconferences.

The relation between M input signals and a
source signal is given by

x(n) = a,x(n) (22)
i-1

xi(n)=a;x(n—3, n;) (i=23,--.M) (23)
=1

where n; is a time delay between x j(n) and x j,,(n), a;
is an attenuation factor. x(n) is also assumed to be
zero mean, white-Gaussian process with a unit vari-
ance and to be independent of ©™. The independent
assumption of x™ and ©™ is common in many analy-
ses and is valid if the step size u is small[11].

For input signals shown in (22) and (23), the auto-
covariance matrices and the cross-covariance matrices
are given by

R, = a;’ly (24)

0n,-+--~+nj_| Mtetn g

0
_ nitetn i N=ni——nj_|
R, _[ N

aiale-n;—u--n i-1 ON—-n, R (PR FE ST Y P
J J J

(URSY)) (25)

R, =R;,; (<) (26)
where 0, ; is an i X j zero matrix. By substituting (24)
- (26) into (10) and by changing the order of rows or

columns, the difference equation is divided into
2M -1 equations:

MU = - uROM™ (i =1, -, 2M = 1). 2T)

M is a sub-matrix of M™ . Fori=1,---, M, M{"is
defined by

(n) (n)
1.Loy j—1.01-1 e ml.M.ol','_l 0y~
(n) (n)

mZ.l.oz,,'_1 o1 T m2'M-02,i—1~°2.i‘1

Ml("’ = . . . . (28)

) (n)
ilojaoiin-l "7 MiMoi.0i0-1
In (28), m{"), , is a sub-vector of m") defined by
m  _ T
m") = Imi jun) mg () - omg (I (29)

where m; j(n) is (k + 1)-th element of m,(-,"j). 0 is
Zj‘, ()
Ry lSj
0, ;=1 k=i . (30)
N (i>))

Fori=M+1,---,2M =1, M is defined as in (31)
where p; ; is

Jj
N-Xn, (<))
Pi;j= = o (32)
0 (i>))

R; is defined by

(n)
i+1,1L,piipiin—1

m(n)

(ny _
MM+i -

(n)

+2,1,p; 410 Pisr st —ni+1=1

M.1.pim-1:Pistm-1-1

(n)
M M.pijupivi-1
(n)
i+2,M,p;is1,Pistis—1

€2V

(n)
M.M.pip-1.Pivim-1-1
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alzlni ala'.’ln,' e alailn,-
2
alazlu,- al,, - aal,
R, = . . . .
ulailni a2ailu,- e aizln,-
and
0.‘+|21u,- ajs1dis2ly, ajsayly,
2
i1 8inly, a2l ai2apmly,
Rysi = :
2
ai+IaMlni ai+ZaMln,- T ay In,-
(i=12,--M-1) 34)
For i = M, ny, defined by
M-1
ny=N-3 n, (35)
i=1

is used. R; is a sub-matrix of the "extended" covari-
ance matrix R.

The difference equations for M{" and MY}, are

completely same as those for the monaural LMS.
Therefore, M{" and M{y,_, have unique solutions and
converge to the optimum values. For M5” and My, _,,
the difference equations are similar to those for a two-
channel case. MY and MYy,_, do not converge to the

optimum.

Convergence analysis of M,(") for i=3,-- M
requires diagonalization of R;, i.e., diagonalization of

PiE . (38)
49i.j 5.,
By using P;, R,; is diagonalized as
S, O
=PRP =] " 9
N

Obviously, R; is singular, and therefore, M,(.") do not
have a unique solution.

The convergence condition for M,(") is determined
as

(40)

O<ux<

i

z 4
Jj=1

i
because maximum eigenvalue of R; is §,; = ¥, a5. If
1

this condition is satistied, M{" converges to (41).
Analyses fori =M +1,.-.,2M — 3 can be carried out
in the same manner as those for i =3,.--, M. Since
the averaged tap-weight error do not converge to zero,
the tap-weight matrix never converge to the optimum.

5. Computer Simulations

Computer simulations have been carried out and
their results have been compared with the analytical
results. Both uncrosscorrelated and crosscorrelated
cases were examined. The number of channels M and
the number of taps N were 4 and 20, respectively.
The echo paths were given by

. : A _ 03k
an Mn; X Mn; matrix. Such a diagonalization can be hyix =€ sin(0.4xk) 42)
carried out by introducing an orthonormal matrix in 03k
1 =€ 70 sin(0. 43
(36) where hy =€ sin(0.37k) (43)
. -0.4k _;
J hiq1p = e *5in(0.37k) 44)
2 31k
S,‘.j = Z ay (37)
k=i
q1.ia11y, qriaaly quiasly, q1iti-1ly; q1.ailp,
9109252k, —qriqriq1a2ly;,  —q1iq2i01031,, ~q1.iq2i010i-11y; —41.i92,;01a;1;
0 929383l —qriqriaasly, ~q2.i43.i020;-1 1, ~q2iq3.i02a;1p,
0 0 43.i94iS4.ily; ~43.iqai030;-t L =41,i44.i030;1p,
P = ' ' (36)
0 0 0 ~qj-1i9;.i9j-10i-1Vy;  —qj-1.9;.i0 j-191n;
L 0 0 0 qi-19:S:.ily; ~qi-1.i9i.i0i-1ailn;
Sri—aDl,  -aialy, —ayayl,
0 0 ] —a,a; ln, (S1i— a22)]n,- _a2aMIn, ©
M= =P, PMO = — : : M 1)
0 I(i—l)ni Sii .
-ayajl,, a1, (Sri—a)ly,
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Fig. 2. Tap weights after converge
for uncrosscorrelated signals.

hay i =€ sin(0.47k) (45)

where h; ; is the k-th element of the echo path vector
h

L]

For the uncrosscorrelated case, each reference
input signal was independent white-Gaussian process
with a unit variance. The crosscorrelated signals were
generated by delaying and by attenuating a white-
Gaussian signal. The attenuation and the delay
parameters were a; =1.0, a,=0.7, a3=0.6,
a4 =0.5, n1 =2, n2=3, n3 =4. Independent white-
Gaussian noises have been added to the echoes as the
additive noise. The variance of the additive noise was
0.01. The step size x4 was settled as 0.01. An aver-
age of 1000 independent runs has been calculated.

Averaged tap-weight vectors after convergence
for uncrosscorrelated case are shown in Fig. 2. Tap
weights converge to the optimum values, i.e., the
impulse responses of the echo paths. Figure 3 depicts
the results for the strongly crosscorrelated signals. In
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Fig. 3. Tap weights after converge
for crosscorrelated signals.

Fig. 3, "Group i" means that the tap weights in this
group are elements of M,("). As shown by the analysis,
the tap weights in Group 1 and Group 7 converge to
the optimum values. However, all the other weights
do not converge to the optimum. The convergence
values agree with analytical results shown in (41).

6. Conclusion

A convergence analysis for a multi-channel
acoustic echo canceller has been presented. Analysis
procedure on the averaged tap-weights and their con-
vergence condition have been formulated. The tap
weights converge to their optimu values if the refer-
ence input signals are not crosscorrelated. For a single
talker case, in which all reference input signals to the
adaptive filters are assumed to be delayed and attenu-
ated versions of a white-Gaussian signal, a part of the
tap weights does not converge to the optimum. Com-
puter simulation results confirm the analysis.
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Appendix A. Derivation of P;

Diagonalization of R; can be simplified to diago-
nalization of

2
a” aa - aq;
apas a22 v A4
R =| - | (AD)
2
aa; ama; - 4

By introduction of a vector

a=[a, ay - a, (A2)
R; is given by
R: = aaT =[a,a aza - - a;a). (A3)

From (A3), it is obvious that the rank of the matrix R;
is 1 and therefore, there is only one non-zero eigen-
value. Since

Ria=(aa")a= (Z a%}a, (A4)
j=1
the non-zero eigenvalue A is given by
A=Y d (AS)
j=l

and the eigenvector for A is a.

Other i — 1 eigenvectors corresponding to 4 =0
can be selected from arbitrary vectors b which satis-
fies

a'b=0. (A6)
Such vectors can be derived by Gram-Schmidt diago-
nalization of vectors

uj=[0,'j 1 01‘,'_/‘_1]T (j=2,"‘,i). (A7)
An eigenvector v, is calculated from u, by

uba a

Vo = Uy — (A8)

luyllal lal”
Similarly, the next eigenvector v; is determined by
uia a uiv, v,

- a_ Y2 A9
“3 7 Tlal lal  luglivyl (v, (A9

V3=

Repeating this procedure will generate i — 1 eigenvec- -
tors for A=0. Vectors a and v; construct an
orthonormal matrix

g a v, Vi .r

P"z[llﬁ@”'l_v]]' (A10)

Expansion of P; to P; is strait-forward.
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