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ABSTRACT

This paper proposes a lattice predictor based adaptive
Volterra filter and a synchronized learning algorithm.
In the adaptive Volterra filter (AVF), the eigenvalue
spread of a correlation matrix is extremely amplified,
and its convergence is very slow for gradient methods.
A lattice predictor is employed for whitening the input
signal. Its convergence property is analyzed. Conver-
gence is highly dependent on a time constant parame-
ter used in updating the reflection coefficients. Further-
more, a synchronized learning algorithm is proposed, by
which fast convergence and a small residual error can be
achieved. Computer simulations, using colored signals
and real speech signals, demonstrate that the proposed
method is 10 times as fast as the DCT based AVF.

1. INTRODUCTION

Laud speakers in audio systems and small speakers em-
bedded in a mobile phone have some nonlinearity. When
they are used in a remote conference system and a visual
phone, in which some echo are caused, nonlinear echo
cancellers are very important.

Adaptive Volterra filters are one of hopeful candi-
dates [1],[2],[3],[4]. It can express general nonlinearity.
However, the Volterra polynomial has a huge number
of terms, and the same number of filter coefficients are
required. Furthermore, when the input signal is col-
ored, the eigenvalue spread of a correlation matrix is
extremely amplified, and convergence is very slow for
gradient methods.

Many kinds of fast and stable learning algorithms
for adaptive Volterra filters have been proposed [5],[3].
RLS algorithm is insensitive to the eigenvalue spread, at
the expense of O(N?) computations. Another method
is to combine a whitening process and an adaptive FIR
Volterra filter. The Discrete Cosine Transform (DCT)
has been applied to the whitening process [7]. Further-
more, an error surface and convergence property have
been analyzed [8]. The DCT is not sufficient for the
whitening process. A linear FIR predictor based on an
AR model of the signal is good for whitening. However,
it requires some time delay, and cannot be applied to
some applications [6].

In this paper, in order to improve the whitening pro-
cess without any time delay, a lattice predictor is em-
ployed for a whitening process. Furthermore, a syn-
chronizing learning algorithm for updating the reflec-
tion coefficients and the filter coefficients is proposed.
Its convergence property is analyzed. The proposed
and conventional methods are compared with each other

through computer simulations by using colored signals
and real speech signals.

2. ADAPTIVE FIR VOLTERRA FILTER
2.1 Structure of AVF

Figurel shows a blockdiagram of an adaptive FIR
Volterra filter (AVF). When a second-order Volterra
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Figure 1: Adaptive FIR Volterra filter.

polynomial is used, the output y(n) is given by

N-1
y(n) = > wi(i)z(n —1i)
N-1 N—ll ’
+ > > w(i ke - jzn—k) (1)
7=0 k=0
w2 ja ) = w2(k7]) (2)

2.2 Eigenvalue Spread Amplification

The eigenvalue spread x = Ajmaz/Amin of the input
signal z(n) is extremely amplified by transforming it
through the Volterra polynomial. Examples are shown
in Table 1. The colored input signal (n) with xy = 780.9
is transferred to the Volterra polynomial terms having
X = 657100, which is 841 times as large as that of z(n).
For this reason, convergence of the adaptive Volterra
filter is very slow for gradient methods.

2.3 Whitening Input Signal

2.8.1 Discrete Cosine Transform

Figure 2 shows the DCT with normalization [7]. The
outputs of the tap delay line z(n) = [z(n),z(n —
1),..,z(n— N +1)] are transformed through the DCT to

1585



Table 1: Eigenvalue spread amplification

Signal )\min )\maz )\max/)\nbin
White Signal 0.716 1.359 1.898
White+Volterra 0.781 52.21 66.83
Colored Signal 0.08151 | 63.66 780.9
Colored+Volterra | 0.01003 | 6590 657100

qg(n) = [go(n),q1(n),..,qn-1(n)], and they are normal-
ized by its standard deviation o4 ;. The outputs s;(n) of
this block are applied to the Volterra polynomial gener-
ating lst-order and high-order terms. These terms are
multiplied by filter coefficients, and are accumulated, re-
sulting in the final output y(n). The DCT does not need
any time delay.

DCT

Normalization

s(n) s/m) s,m) s, @

Figure 2: DCT whitening process with normalization.

2.8.2 Linear FIR Predictor Based on AR Signal Model

When the signal can be modeled by the output of an AR
circuit driven by the white noise, a linear FIR prediction
error filter shown in Fig.3 is good for whitening. e(n) is
used as the AVF input.

x(n)

[ —

e(n)
Figure 3: Linear predictor based on FIR filter.

2.4 Position of Whitening in Nonlinear Filters

Two kinds of positions for the whitening are shown in
Figs.4 and 5, and are denoted Type-A and Type-B, re-
spectively. Any time delay is not allowed in Type-A.
Reason can be explained as follows: Suppose the lin-
ear predictor shown in Fig.3 is used in Type-A, and
both the unknown system and the AVF have the N-
th order FIR filter and a 2nd-order Volterra polyno-
mial. The output of the unknown system includes
x(n—1),i=0,1,.., N—1 and their high-order terms. On

the other hand, in the AVF part, e(n), which consists
of (n —1),i = 0,1,..,L — 1, is the input of the AVF,
then x(n—1),i=0,1,.., N+ L — 1 and their high-order
terms are included in its output signal. Therefore, their
transfer functions are inherently different.

On the other hand, in Type B, any kinds of the
whitening process, with or without time delay, can be
employed. However, since the output of the unknown
system may be sound from a laud speaker located in a
conference room, it cannot be applied to some applica-
tions, such as echo cancellation.

x(n)
D—{ Whitening }7

Figure 5: Whitening both adaptive filter and unknown
system inputs (Type-B).

3. LATTICE PREDICTOR BASED AVF
3.1 Circuit Structure

In practical applications, Type A is important. There-
fore, we employ the lattice predictor [9] for the whiten-
ing process. The proposed lattice predictor based AVF
is shown in Fig.6. Under the conditions the delay line
order is IV, the order of the Volterra polynomial is M,
the order of the lattice predictor is L, and N > L, the
order of the transfer function Y (z)/X (z), and the num-
ber of filter coefficients in both AVF in Fig.1 and Fig.6
are the same. If the unknown system can be modeled by
using the FIR Volterra filter, the same transfer function
can be realized by the lattice predictor based AVF.

3.2 Reflection Coefficient Update
The reflection coefficients are updated by the following

equations [9].

2B = 1) f(0)]
Iim(’ﬂ) B E['fm—l(n)|2 + |bm—1(n - 1>|2] (3)
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KD,m(n)
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Figure 6: Lattice predictor based AVF.

3.3 Synchronized Learning Algorithm
3.8.1 Lattice Predictor Based Adaptive Filters

Convergence property of the lattice predictor based FIR
adaptive filter has been analyzed, and the synchronized
learning algorithm has been proposed [10]. Updating
the reflection coefficients and the filter coefficients are
not synchronized, and some error remain.

The synchronizing method [10] is described here.
The linear adaptive filter with the lattice predictor is
equivalent to the circuit shown in Fig.6, except for the
Volterra polynomial block. The filter coefficients w(n)
is directly connected to b(n). The output y(n) is

b(n) = K(n)x(n) (7)
y(n) = w’(n)b(n) (8)

b(n) is a vector of the backward prediction error b,,(n),
K (n) is a matrix consists of the reflection coefficients,
x(n) is the input, w(n) is the filter coefficients. In the
next iteration step, K(n) is updated to K(n + 1), and
y(n+1) and e(n + 1) are generated by using K (n + 1)
and w(n). However, w(n) is optimized for K(n) not
K (n +1). Therefore, e(n + 1) is not guaranteed to be
reduced. For this reason, w(n) is modified sa as,

(n+1) = K(mz(n+1) 9)
gn+1) = wl(n)bn+1) (10)
bn+1) = Km+Dzn+1) (11)
yin+1) = w'(n)b(n+1) (12)

g(n 4+ 1) can reduce the output error. Therefore, the
filter coefficients w(n) is modified as follows:

K '(n+Dwn) = K" (n)w(n) (13)
L = 7KT(H) w(n
W) = reChow (4

w(n) is used in the next iteration n+ 1, instead of w(n),
for generating §(n + 1) and é(n + 1). The filter coeffi-
cients are updated to w(n + 1) by using é(n + 1) and

w(n). A combination of K(n) and w(n) is equivalent
to that of K(n + 1) and w(n). Thus, the output error
is guaranteed to be decreased.

3.3.2 Lattice Predictor Based AVF

In the lattice predictor based AVF shown in Fig.6, the
inputs of the Volterra function become b,,(n),m < L
and by,_1(n —m+ L —1), L <m. The filter coefficients
wy () for the linear terms b;(n),i < L or br_1(n — i +
L —1),L < i, can be modified by the same way as in
Eq.(14). The other filter coefficients wa(j, k) for the
2nd-order terms, for instance b;(n)bg(n), are modified
in the following way.

b(n) = K(n)x(n) (15)
bj(n) = kj(n)x(n) (16)
bj(m)b(n) = (kj (n)a(n)) (ki (n)a(n)) (17)

k;(n) is the j-th row vector of K(n). The modification
can be expressed as follows:

wa(j, k) (n)k] (n+ 1) R(n + 1)k (n + 1)
= wy(j, k)(n)k] (n)R(n + 1)ki(n) (18)
Rn+1)=z"(n+1z(n+1) (19)

From this relation, the 2nd filter coefficients are modi-
fied as follows:

kJT(n)R(n + 1)k (n)

kT (n+ 1)R(n + 1)ky(n+ 1) wa(j, k)(n)

(20)

w(j, k) (n) =

4. SIMULATION AND DISCUSSIONS
4.1 Colored Signal

The colored signal is generated passing the white noise
through a 2nd-order AR model, and is applied to the
adaptive Volterra filter. The learning curves for the AVF
without whitening, and with the DCT method in Type
A and the linear predictor in Type B are shown in Fig.7.
The NLMS algorithm and stepsize=0.1 are employed.

W Without Whitening

A g A by P Mt
AN o
DCT in Type-A et

Output Error[dB]

Linear Predictor in Type-B

0 200000 400000 600000 800000 1e+06

Iteration[sample]

Figure 7: Learning curves for colored signal.

From these results, convergence is very slow, when
the whitening process is omitted. The DCT can improve
convergence to some extent. The FIR linear predictor
in Type-B is good, because the whitening is complete.
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However, this type cannot be applied to echo canceler
and so on.

Figure 8 shows the learning curves of the lattice pre-
dictor based AVF. Convergence property depends on a
time constant 7, which control the reflection coefficient
update. From Eqs.(4) and (5), when v(< 1) is very close
to unity, the reflection coefficients k; are very gradually
adjusted. Untill v = 0.999999, the convergence can be
improved. Compared with Fig.7, the learning curves
for the lattice predictor almost saturate around 50dB,
however, it requires only 85,000 iterations until -40dB,
while the DCT and the linear predictor need 320,000
iterations and 150,000 iterations, respectively.
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Figure 8: Learning curve for colored signal by using
lattice predictor based AVF.

4.2 Speech Signal

Speech signal is used as the input signal for the AVF.
Figures 9 and 10 show the learning curves by using the
DCT and the linear predictor, and by using the lattice
predictor, respectively. In the former figure, the mean
squared error in some interval is normalized by the mean
squared signal in the same interval. In the latter case,
it is normalized by the mean squared signal in the en-
ter interval. So, the curves are different. From these
results, the DCT cannot improve from the NLMS with-
out whitening. The linear predictor can reach at -40dB
with 250,000 iterations. On the other hand, the lat-
tice predictor can reach at -40dB with 25,000 iterations.
Thus, convergence time can be reduced to 1/10 of the
FIR linear predictor.

DCT and Normalizing

NLMS

Output Error[dB

Prediction error filt

400000 600000 800000

Iteration[sample]
Figure 9: Learning curve for speech signal by using DCT
and linear predictor.
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Figure 10: Learning curves for speech signal by using
lattice predictor.

5. CONCLUSIONS

In this paper, the lattice predictor based AVF and its
synchronized learning algorithm have been proposed.
Its convergence is dependent on the time constant pa-
rameter. Convergence can be improved to 10 times as
fast as the conventional for stationary and nonstation-
ary colored signals.
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