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ABSTRACT
A lattice predictor based adaptive Volterra filter (LP-
AVF) is superior to the others with some whitening pre-
processing. The LP-AVF has an asynchronous updating
problem, which limit convergence property. Updating
reflection coefficients of the lattice prediction error filter
and an adaptive filter coefficients are not synchronized.
A synchronized algorithm has been proposed for a lin-
ear model, which can be applied to the linear part of the
LP-AVF. However, an asynchronous updating problem
for the nonlinear part of the LP-AVF is still remain. In
this paper, a new synchronized learning algorithm for
the nonlinear part is proposed. An equivalent trans-
fer function is introduced for the nonlinear part. The
adaptive filter coefficients are compensated for during a
learning process in order to maintain the transfer func-
tion to be the same for the next updated reflection co-
efficients. Simulation results using stationary and non-
stationary colored input signals demonstrate efficiency
of the proposed method.

1. INTRODUCTION

Laud speakers in audio systems and small speakers em-
bedded in a mobile phone have some nonlinearity. When
they are used in a remote conference system and a visual
phone, in which some echo are caused, nonlinear echo
cancellers are very important.

An adaptive Volterra filter (AVF) is one of hope-
ful candidates [1],[2],[3]. It can express general nonlin-
earity. However, the Volterra polynomial has a huge
number of terms, and the same number of filter coeffi-
cients are required. Furthermore, when the input signal
is colored, the eigenvalue spread of a correlation matrix
is extremely amplified by the Volterra polynomial, and
convergence is very slow for gradient methods.

Many kinds of fast and stable learning algorithms
for adaptive Volterra filters have been proposed [4],[2].
One approach is to combine a whitening process and
an adaptive FIR Volterra filter. The Discrete Cosine
Transform (DCT) has been applied to the whitening
process [6]. A linear FIR predictor based on an AR
model of the signal is good for whitening [7]. However,
it requires some time delay, and its application is limited
[5]. In order to improve the whitening process without
any time delay, a lattice predictor has been employed
for a whitening process [9]. However, this approach has
inherently an asynchronous updating problem [8].

In this paper, the asynchronous updating problem
in the lattice predictor based AVF is analyzed in detail.
Furthermore, a synchronized learning algorithm for the

nonlinear part of the LP-AVF is proposed. Simulations
under several conditions will be shown in order to con-
firm usefulness of the proposed method.

2. ADAPTIVE FIR VOLTERRA FILTER

Figure1 shows a blockdiagram of an adaptive FIR
Volterra filter (AVF). When a second-order Volterra
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Figure 1: Adaptive FIR Volterra filter.

polynomial is used, the output y(n) is given by

y(n) =
N−1∑

i=0

w1(i)x(n − i)

+
N−1∑

j=0

N−1∑

k=0

w2(j, k)x(n − j)x(n − k) (1)

w2(j, k) = w2(k, j) (2)

3. LATTICE PREDICTOR BASED AVF

3.1 Circuit Structure

In practical applications, Type A is important. There-
fore, the lattice predictor [7] has been employed for the
whitening process [9]. The lattice predictor based AVF
(LP-AVF)is shown in Fig.2. Letting the delay line or-
der be N , order of the Volterra polynomial be M , or-
der of the lattice predictor be L, and N > L, order of
the transfer function Y (z)/X(z), and the number of fil-
ter coefficients in both AVF in Fig.1 and Fig.2 are the
same. If the unknown system can be modeled by using
the FIR Volterra filter, the same transfer function can
be realized by the LP-AVF.
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Figure 2: Lattice predictor based AVF.

3.2 Reflection Coefficient Update

The reflection coefficients are updated by the following
equations [7].

κm(n) = − 2E[bm−1(n − 1)f∗
m−1(n)]

E[|fm−1(n)|2 + |bm−1(n − 1)|2] (3)

κN,m(n) = γκN,m(n − 1) + bm−1(n − 1)f∗
m−1(n)(4)

κD,m(n) = γκD,m(n − 1) + |fm−1(n)|2
+ |bm−1(n − 1)|2 (5)

0 < γ < 1

κm(n) = −2
κN,m(n)
κD,m(n)

(6)

3.3 Asynchronous Updating Problem

Convergence property of the lattice predictor based lin-
ear adaptive filter (LP-AF) has been analyzed, and the
synchronized learning algorithm has been proposed [8].
Updating the reflection coefficients and the filter coef-
ficients are not synchronized, and the output error is
lower bounded . The linear LP-AF is equivalent to the
circuit shown in Fig.2, except for the Volterra polyno-
mial block. The filter coefficients w(n) is directly con-
nected to b(n).

b(n) = KT (n)x(n) (7)

y(n) = wT (n)b(n) = wT (n)KT (n)x(n) (8)
e(n) = d(n) − y(n) (9)

b(n) is a vector of the backward prediction error bm(n),
K(n) is a matrix consists of the reflection coefficients,
x(n) is the input, w(n) is the filter coefficients and d(n)
is a desired response. w(n) is updated to w(n+1) using
b(n) and e(n). In the next sample, K(n) is updated to
K(n + 1), and y(n + 1) and e(n + 1) are generated by
using K(n + 1) and w(n + 1). However, w(n + 1) is
optimized by using K(n). Therefore, the combination
of K(n) and w(n + 1) can reduce e(n + 1). However,
w(n+1) is combined to K(n+1), and the output error
e(n+1) cannot be well reduced. This is an asynchronous
updating problem [8]

4. SYNCHRONIZED LEARNING
ALGORITHM

4.1 Linear Part of LP-AVF

The synchronized learning algorithm for the linear LP-
AF [8] can be directly applied to the linear part of the
LP-AVF. This algorithm is described here.

From Eq.(8), wT (n)KT (n) can be regarded as a
transfer function. w(n+1) is modified so as to maintain
the transfer function using K(n + 1) to be the same as
that using K(n) as follows:

w̃T (n + 1)KT (n + 1) = wT (n + 1)KT (n) (10)
K(n + 1)w̃(n) = K(n)w(n) (11)

w̃(n + 1) =
K(n)

K(n + 1)
w(n) (12)

w̃(n + 1) is used in the next iteration n + 1, instead of
w(n+1), for generating y(n+1) and e(n+1). w̃(n+1)
is updated to w(n + 2) by using K(n + 1).

4.2 Nonlinear Part of LP-AVF

Assuming the 2nd-order Volterra polynomial, the 2nd-
order terms can be expressed by

b(n) = [b(n), b(n − 1), · · · , b(n − N + 1)]T (13)

b(n) = KT (n)x(n) (14)

B(n) = b(n)bT (n) = KT (n)x(n)xT (n)K(n)(15)

= KT (n)R(n)K(n) (16)

R(n) = x(n)xT (n) (17)
β(n, i, j) = b(n − i)b(n − j), 0 ≤ i, j ≤ N − 1 (18)

The inputs of the Volterra polynomial in Fig.2 are de-
noted b(n − i) for convenience. β(n, i, j) is the (i, j)-th
element of B(n), which is a symmetrical matrix, and
includes all 2nd-order terms of the Volterra polynomial.
The nonlinear part of the AVF output can be expressed
by

y(n) = tr[W (n)B(n)] (19)

tr[A] is a trace of a matrix A. W (n) is a filter coeffi-
cient matrix. The i-th diagonal element of W (n)B(n)
is an inner product of the i-th row of W (n) and the
i-th column of B(n). Thus, the elements of W (n) can
express the filter coefficients for the nonlinear part.

By substituing Eq.(16), Eq.(19) can be rewritten as
follows:

y(n) = tr[W (n)KT (n)R(n)K(n)] (20)

= tr[R(n)K(n)W (n)KT (n)] (21)

In the above equations, the property of the trace, that
is tr[AB] = tr[BA] is applied. From the above equa-
tion, K(n)W (n)KT (n) can be regarded as an equiv-
alent transfer function. A synchronized learning algo-
rithm can be derived by modifying the filter coefficients
W (n) so as to maintain the transfer function to be the
same as before updating the reflection coefficients.



Let W (n) is updated to W (n + 1) by using K(n),
then the condition for the synchronized learning is ex-
pressed by

K(n + 1)W̃ (n + 1)KT (n + 1)

= K(n)W (n + 1)KT (n) (22)

The modified filter coefficients are given by

W̃ (n + 1) = K−1(n + 1)K(n)W (n + 1)

×KT (n)KT (n + 1)−1 (23)

W̃ (n+1) is used at the next iteration instead of W (n+
1) in the same way as the linear part.

5. SIMULATION AND DISCUSSIONS

5.1 Simulation Conditions

The AVF is applied to a system identification problem.
Stationary and nonstationary colored signals, which are
generated through a 2nd-order AR model, are used. A
pole is given by re±θ, r = 0.9, θ = π/4 for stationary
signal, and θ(n) = (π/4)(1 + a sin(2πn/500)), a = 0.2
for nonstationary signal. Stepsize is optimized for each
whitening methods and input signals by experience. The
number of taps of the delay line is 50, and the 2nd-order
Volterra polynomial is used. Therefore, 1325 terms, in-
cluding 50 linear terms and 1275 nonlinear terms, are
used. The unknown system is also realized using the
FIR-Volterra filter shown in Fig.1 with fixed coefficients,
which are determined as random numbers. The NLMS
algorithm is employed for all cases.

5.2 Comparison among Several Whitening
Methods

The DCT and normalization method [6] and the linear
prediction error filter [7] are used for comparison. The
LP-AVF with asynchronous updating is used. The time
constant γ is set to be 0.999999. Effects of γ will be
discussed later. Figure3 shows learning curves for the
nonstationary colored signal. The LP-AVF is superior
to the other two methods.
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Figure 3: Learning curves for nonstationary colored sig-
nal.

5.3 Asynchronous Updaing Problem

As discussed in Sec.3.3, the LP-AVF has inherently the
asynchronous updating problem. This property is ana-
lyzed here.

In the case of the stationary colored signal, the re-
flection coefficients κ(n) are deviated from the ideal κo

following

κ(n) = κo(1 + a) (24)
κ(n) = κo(1 + a sin(2πn/1000)) (25)

Figure 4 shows the learning curves using the above re-
flection coefficients. When κ(n) are deviated from the
ideal and fixed, the asynchronous updating problem
does not occur, and the output error can be well re-
duced. However, when κ(n) change around the ideal,
the deviation should be suppressed to 0.0001 in order to
achieve the output error of −60dB.
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Figure 4: Learning curves for fixed and time varying
κ(n).

Another way to suppress change of κ(n) in one it-
eration is to make the time constant γ in Eqs.(4) and
(5) to be very close to unity. Figure 5 shows the learn-
ing curves using several values of γ in the case of the
nonstationary colored signal.
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Figure 5: Learning curves for several time constant γ.

5.4 Synchronized Learning Algorithm

The synchronized learning algorithms for the linear part
and the nonlinear part are simulated here. Figure6
shows the learning curves for the stationary colored sig-
nal. ’Asynchronous’, ’Synchronized(L)’ and ’Synchro-
nized(L+NL)’ mean the learning algorithm without syn-
chronization of updating the reflection coefficients and
the filter coefficients, the synchronized learning algo-
rithm only for the linear part, and the synchronized
learning algorithm for both the linear and nonlinear



parts. The learning curve of ’Synchronized(L)’ is almost
the same as that of ’Asynchronous’. On the contrary,
the synchronized learning algorithm for both the linear
and nonlinear parts, shown with ’Synchronized(L+NL)’,
can improve the learning curve by 15dB.

Figure7 shows the learning curves for the nonsta-
tionary colored signal, which is generated through the
2nd-order AR model, whose pole oscillates around π/4
by ±20% with a period of 500 samples. In this case,
also the synchronized learning algorithm for both the
linear and nonlinear parts is superior to the others. In
this figure, ’Synchronized(L)’ is not shown, because it is
almost the same as ’Asynchronous’.

Furthermore, the learning curves for another non-
stationary colored signal are shown in Fig.8. The pole
of the 2nd-order AR model oscillates around π/4 by
±100% with a period of 500 samples. In this case, the
reflection coefficients change more rapidly compared to
the previous example. For this reason, the convergence
becomes a little slower than the previous. Still, the syn-
chronized learning algorithm can improve the conver-
gence property.
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Figure 6: Learning curves for LP-AVF using sta-
tionary colored signal. Synchronized(L) and Synchro-
nized(L+NL) means synchronized learning algorithms
for linear part and linear and nonlinear parts, respec-
tively, are used.
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Figure 7: Learning curves for LP-AVF using nonstation-
ary colored signal. Pole of 2nd-order AR model oscil-
lates around π/4 by 20% with period 500 samples.
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ary colored signal. Pole of 2nd-order AR model oscil-
lates around π/4 by 100% with period of 500 samples.

6. CONCLUSIONS

Several kinds of whitening methods for the adaptive
Volterra filter have been compared. The lattice pre-
dictor based AVF is superior to the others. Conver-
gence property of the asynchronous LP-AVF has been
analyzed. Furthermore, the synchronized learning al-
gorithm for the nonlinear part of the LP-AVF has been
proposed, and its usefulness has been confirmed through
several simulations using stationary and nonstationary
colored signals.
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