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ABSTRACT

In blind source separation, convergence and separation per-
formance are highly dependent on a relation between a prob-
ability density function (pdf) of the output signals y and
nonlinear functions f(y) used in updating coefficients of
a separation block. This relation was analyzed based on
kurtosis κ4 of the output signals. The nonlinear functions,
tanh(y) and y3 have been suggested for super-Gaussian
(κ4 ≥ 0) and sub-Gaussian (κ4 < 0) distributions, respec-
tively. Furthermore, an adaptive nonlinear function, which
can be continuously controlled, was proposed. The nonlin-
ear function is formed as a linear combination of y3 and
tanh(y). Their linear weights are controlled by the esti-
mated κ4. Although the latter can improve separation per-
formance, its performance is still limited especially in dif-
ficult separation problems. In this paper, a new method is
proposed. Nonlinear functions are directly controlled by the
estimated pdf p(y) of the separation block outputs y. p(y) is
expressed by a mixture Gaussian model, whose parameters
are iteratively estimated sample by sample. f(y) and p(y)
are related by the stability condition f(y) = −(dp(y)/dy)/p(y).
Blind source separation using 2∼ 5 channel music signals
are simulated. The proposed method is superior to the above
conventional methods. Three Gaussian functions are enough
to express the output pdf.

1. INTRODUCTION

Recently, many kinds of information are transmitted and
processed. At the same time, high quality is required. For
this reason, signal processing including noise cancelation,
echo cancelation, equalization of transmission lines, restora-
tion of signals have been becoming very important tech-
nology. In some cases, we do not have enough informa-
tion about signal sources and interference. Furthermore,
their mixing process and transmission process are not well
known in advance. Under these situations, blind source sep-
aration using statistical property of the signal sources has
become important.

Jutten et all proposed a blind source separation algo-
rithm based on statistical independence and symmetrical dis-
tribution of the signal sources [1]-[8]. Two kinds of stabi-
lization methods have been proposed for Jutten’s method
[10],[17]. Furthermore, convolutive mixture models have
been discussed [9],[20].

Convergence and separation performances are highly de-
pendent on relation between a probability density function
(pdf) of the output signals y and nonlinear functions f(y)
and g(y), which are used in updating coefficients in a sep-
aration block. Optimum nonlinearity has been discussed
based on kurtosis κ4 of the output signals. Nonlinear func-
tions f(y) = a tanh(y) and f(y) = by3 have been sug-
gested for super-Gaussian (κ4 ≥ 0) and sub-Gaussian (κ4 <
0) distributions, respectively. Another function is fixed to
g(y) = y [14],[15],[16].

In music signals, the kurtosis κ4 dynamically changes
and takes both positive and negative values. In this case, the
nonlinear functions must be controlled in an online man-
ner. From the above discussion, one method is to switch
two kinds of nonlinear functions based the polarity of κ4.
However, since the kurtosis of music signals dynamically
changes, switching method is not stable. In order to solve
this problem, an adaptive nonlinear function has been pro-
posed, which is continuously controlled by the kurtosis [19].
The nonlinear function is formed as a linear combination of
y3 and tanh(y). Their linear weights are controlled by the
estimated κ4. Furthermore, a learned parametric mixture
method has been proposed [18]. Although these methods
can improve separation performance, it is still insufficient
for difficult separation problems, in which the number of
channels is large, and power of the interference is close to
that of the main signal.

In this paper, a new adaptive nonlinear function is pro-
posed. The nonlinear function is derived from the stabil-
ity condition f(y) = −(dp(y)/dy)/p(y). p(y) is a pdf of
the output signal y. p(y) is estimated though an iterative
method. Blind source separation using 2∼ 5 channel music
signals are simulated, and usefulness of the proposed meth-
ods will be evaluated.



2. NETWORK AND LEARNING ALGORITHM

2.1. Network Structure

In this paper, the feedforward network shown in Fig.1 is
taken into account.
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Fig. 1. Feedforward blind source separation.

The signal sources si(n), i = 1, 2, ..., N are linearly
combined using unknown weights aji, and are sensed at N
points, resulting in xj(n). A general form is

xj(n) =
N∑

i=1

ajisi(n) (1)

The output of the separation block yk(n) is given by

yk(n) =
N∑

j=1

wkjxj(n) (2)

This relation is expressed using vectors and matrices as fol-
lows:

x(n) = As(n) (3)

y(n) = Wx(n) (4)

y(n) = WAs(n) = Ps(n) (5)

A is an unknown mixing matrix and W is a weight ma-
trix of the separation block. P expresses separation per-
formance. If P has a single nonzero element in each raw
and each column, and the number of the nonzero elements
is equal to N , then the signal sources are completely sepa-
rated at the outputs y(n).

2.2. Learning Algorithm

Learning algorithms given by [11],[12],[13] are employed
in this paper.

W (n + 1) = W (n) + η(n)[Λ(n)
− f(y(n))g(yT (n))]W (n)

Λ(n) is any positive definite scaling diagonal matrix. f(y(n))
and g(yT (n)) are nonlinear functions, which will be opti-
mized in an online manner based on distribution of the out-
put y(n).

2.3. Relation between Nonlinear Functions and Kurto-
sis

Relations between nonlinear functions and 4th-order statis-
tics ”kurtosis” have been discussed. Some kinds of nonlin-
ear functions are selected based on kurtosis κ4 as follows:
[16]

Kurtosis : κ4 =
E[(y − ȳ)4]
E2[(y − ȳ)2]

− 3 (6)

Sub-Gaussian : κ4 < 0 f(y) = ay3 (7)

a =
1

κ4 + 3
(8)

Super-Gaussian : κ4 > 0 f(y) = b tanh y (9)

b =
1

E[y tanh y]
(10)

a and b are scaling factors used to adjust the output power.

3. NONLINEAR FUNCTIONS CONTROLLED BY
KURTOSIS

3.1. Two Nonlinear Functions Switched by Polarity of
Kurtosis

The nonlinear functions discussed in sec2.3 can be used in
an online manner. They can be switched taking the polarity
of κ4 into account. κ4 is iteratively estimated by repeating
the following equations.

ȳ(n) = (1 − α)ȳ(n − 1) + αy(n) (11)

κ(n) = (1 − α)κ(n − 1) + α(y(n) − ȳ(n))4 (12)

σ2(n) = (1 − α)σ2(n − 1) + α(y(n) − ȳ(n))2(13)

κ4(n) =
κ(n)
σ4(n)

− 3 (14)

0 < α � 1 (15)

3.2. Continuously Controlled Nonlinear Function by Kur-
tosis

A nonlinear function is formed as a linear combination of
the nonlinear functions given in sec2.3. Their scaling factor
are controlled by kurtosis [19].

f(y) = a tanh y + (1 − a)
y3

4
(16)

f(y) can cover a wide range of kurtosis. The other nonlinear
function is fixed as folows:

g(y) = y fixed (17)



In Eq.(16), a is controlled by the kurtosis, which is esti-
mated by Eqs.(11) through (15). The pdf p(y) of the output
is derived from the stability condition

f(y) = −dp(y)/dy

p(y)
(18)

Using Eq.(16), p(y) becomes

p(y) = e
−
�
a(log cosh y+0.25)+(1−a)

�
y4

16 +0.45
��

(19)

0.25 and 0.45 are used to normalize p(y). Using this ex-
pression, the relation between a and κ4 is numerically cal-
culated, and is approximated by

a(n) =
1 − e−2.5κ4(n)−2.1

1 + e−2.5κ4(n)−2.1
(20)

a(n) is updated at each sample n.

Finally, the nonlinear function is controlled as

f(y(n)) = a(n) tanh y + (1 − a(n))
y3(n)

4
(21)

g(y(n)) = y(n) fixed (22)

4. NONLINEAR FUNCTION CONTROLLED BY
OUTPUT PDF

Since the nonlinear function described in sec3.2 is a combi-
nation of two kinds of functions, its form is rather limited.
Furthermore, the corresponding pdf is limited to a single
Gaussian function, which is not enough to approximate the
output pdf.

In this paper, this idea is further extended by directly
using the output pdf p(y) for adjusting the nonlinear func-
tions. p(y) is iteratively estimated sample by sample. The
nonlinear function f(y) and the pdf p(y) are also related by
the stability condition Eq.(18).

p(y) is formed as a mixture Gaussian model in order to
express more general distribution.

p(y) =
M∑
i=1

Ciφ(y;µi, σ
2
i ) (23)

φ(y;µi, σ
2
i ) =

1√
2πσ2

i

exp(
−(y − µi)2

2σ2
i

) (24)

The mean µi and the variance σ2
i are estimated through the

following adaptive mixture (AM) algorithm [21].

gi =
Ciφi(y(n + 1))

p(y(n + 1))
(25)

Ci(n + 1) = Ci(n) +
1
v
(gi − Ci(n)) (26)

µi(n + 1) = µi(n) +
gi

v
(y(n + 1) − µi(n)) (27)

σ2
i (n + 1) = σ2

i (n) +
gi

v + gi − 1

× (
v

v + gi
(y(n + 1) − µi(n))2 − σi(n))

(28)

The above update is carried out for i = 1 ∼ M . The param-
eters g, C, µ, σ2 requires the initial guess. Numerical data
will be shown in simulation.

Using p(y) estimated by Eq.(23) and its derivative, shown
below, f(y) is obtained by Eq.(18) sample by sample.

dp(y)
dy

=
M∑

i=1

Ci
dφ(y;µi, σ

2
i )

dy
(29)

dφ(y;µi, σ
2
i )

dy
=

1√
2πσ2

i

−2(y − µi)
2σ2

i

×exp(
−(y − µi)2

2σ2
i

) (30)

5. SIMULATION AND DISCUSSIONS

5.1. Kurtosis, PDF and Nonlinear Functions

One example of the kurtosis of music signal is shown in
Fig.2. It takes negative and positive values, and dynamically
changes.
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Fig. 2. One example of kurtosis of music signal.

Figure 3 shows the nonlinear function given by Eq.(16),
where a is changed from 0 to 1.

Figure 4 shows the histogram of music signals and its
estimated pdfs. In the upper and the lower figures, they are
estimated at 35,000 samples and 50,000 samples, respec-
tively. The pdf, which is estimated by using the kurtosis,
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Fig. 3. Nonlinear function given by Eq.(16).

is obtained by solving the differential equation Eq.(18) for
p(y) using f(y) controlled by the kurtosis. In estimating
the pdf by the iterative method shown in sec4, the following
parameters are used. From these results, the pdf estimated
by using the kurtosis is not enough.

v = 500 ∼ 800 (31)

gi(1) = 0.1 (32)

µi(1) = −0.8 ∼ 1.0 (33)

σ2
i (1) = 0.05 (34)

m = 10 (35)
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Furthermore, the nonlinear functions f(y) calculated by
using the kurtosis and the pdf are shown in Fig.5. Both

nonlinear functions are somewhat different.
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5.2. Blind Source Separation Performance

Separation performance is evaluated by the following SNR.

SNR = 10log
Σi,j∈Ω1p

2
ij

Σi,j∈Ω2p
2
ij

(36)

pij is the elements of P in Eq.(5). Ω1 includes the signal
sources and Ω2 includes the interference components. Ex-
amples of the mixing matrix for 3-channel and 5-channel
are shown here.

A3ch =




1.0 0.6 0.5
0.3 1.0 0.7
0.4 0.5 1.0


 (37)

A5ch =




1.0 0.3 0.6 0.7 0.3
0.5 1.0 0.4 0.6 0.4
0.6 0.5 1.0 0.5 0.4
0.3 0.6 0.5 1.0 0.5
0.4 0.6 0.7 0.3 1.0




(38)

Figure 6 shows SNR of blind source separation of mu-
sic signals using the three kinds of methods. The upper fig-
ure shows 2-channel case and the followings are 3-channel,
4-channel and 5-channel, in this order. In all cases, the pro-
posed nonlinear function controlled by the output pdf is su-
perior to the others.
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Fig. 6. SNR of blind source separation of music signals
by three kinds of methods. From top to bottom, 2-ch, 3-ch,
4-ch and 5-ch cases are arranged in this order.

5.3. Number of Gaussian Functions

The above simulations were carried out by using M = 10,
that is ten Gaussian functions φ(y;µi, σ

2
i ) are used in Eq.(23).

Effect of the number of the Gaussian functions is evaluated.
The simulation results in the 5-channel case are shown in
Fig.7. The number in these figure indicate the number of
Gaussian functions. SNR obtained by using 3∼10 Gaus-
sian functions are almost the same. From this result, 3
Gaussian functions are enough in the proposed method. The
conventional nonlinear function, continuously controlled by
the kurtosis, equivalently uses only a single Gaussian func-
tion. Therefore, by extending the number of the Gaussian
functions used in the pdf, separation performance can be
effectively improved.
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5.4. Effect of Mixing Matrix

The mixing process is evaluated by the following SNR.

SNRmix = 10log
Σi,j∈Ω1a

2
ij

Σi,j∈Ω2a
2
ij

(40)

aij is the elements of A in Eq.(3). Ω1 includes the main
path and Ω2 includes the interference paths. SNRmix can
express dificulty of separation. Furthermore, separation per-
formance is highly dependent on the variance of the com-
ponents in A. aij in Ω1 are fixed to 1 and the others are
changed. The standard deviation of aij in Ω2 is evaluated.
The separation performance with different standard devi-
ation are simulated for 5-channel case, and are shown in
Fig.8. The proposed method is not affected by the variance,
while the other methods are affected. Especially, the switch-
ing method is not useful for this kind of difficult separation
problem.
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6. CONCLUTIONS

In blind source separation, the nonlinear functions are used
in updating the coefficients of the separation block. In this
paper, an adaptive nonlinear function has been proposed.
The nonlinear function is adjusted by using the output pdf
following the stability condition. The output pdf, which is
expressed by the mixture Gaussian form, is iteratively esti-
mated. Simulation results using 2∼5-channel music signals
have been shown. The proposed method can achieve high
separation performance compared with the conventional adap-
tive nonlinear functions, including the switching method
and the continuous control method by the kurtosis. In the
proposed method, 3 Gaussian functions in the mixture model
are enough in expressing the output pdf.
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