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Abstract. Feed-Forward (FF-) and Feed-Back (FB-) structures have
been proposed for Blind Source Separation (BSS). The FF-BSS systems
have some degrees of freedom in the solution space, and signal distortion
is likely to occur in convolutive mixtures. On the other hand, the FB-
BSS structure does not cause signal distortion. However, it requires a
condition on the propagation delays in the mixing process. In this paper,
source separation performance in the FB-BSS is theoretically analyzed
taking the propagation delays into account. Simulation is carried out by
using white signals and speech signals as the signal sources. The FF-BSS
system and the FB-BSS system are compared. Even though the FB-BSS
can provide good separation performance, there exits some limitation on
location of the signal sources and the sensors.

1 Introduction

Two kinds of approaches have been proposed for Blind Source Separation (BSS).
One of them is a Feed-Forward (FF-) BSS, and the other is a Feed-Back (FB-)
BSS [1]-[3]. In the FF-BSS, there exits some degrees of freedom in determining
a separation block, and signal distortion is likely caused. Several methods have
been proposed to suppress the signal distortion [4],[6],[7],[8]. Mainly, additional
conditions are imposed on the learning process for source separation. On the
other hand, the FB-BSS has no degree of freedom, and distortion free outputs can
be obtained as a result of source separation. Therefore, the FB-BSS can provide
good performances in both source separation and signal distortion. However, the
FB-BSS requires some condition on propagation delays in a mixing process [5].
The source separation performance is degraded if the propagation delays do not
satisfy this condition.

In this paper, source separation performance of the FB-BSS is theoretically
analyzed based on the propagation delays. Simulation results obtained by using
white signals and speech signals will be shown to confirm the theoretical analysis
and to compare the FF-BSS and the FB-BSS. Finally, usefulness of the FB-BSS
is discussed based on relative locations of the sources and the sensors.



2 Feed-Forward BSS

2.1 Network and Input-Output Equations
A block diagram of the FF-BSS is shown in Fig.1(Left). In the separation block,
an FIR filter, shown in Fig.1(Right), is used.
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Fig. 1. (Left) A block diagram of FF-BSS. (Right) FIR filter used for Wkj(z).

The sources si(n), i = 1, 2, · · · , N are convoluved with impulse responses
of the mixing block hji(n), and are observed as xj(n), j = 1, 2, · · · , N . The
separation block outputs yk(n) are convolution sums of wkj(n) and xj(n).

xj(n) =
N∑

i=1

Kh−1∑
m=0

hji(m)si(n − m) (1)

yk(n) =
N∑

j=1

Kw−1∑
l=0

wkj(l)xj(n − l) (2)

2.2 Learning Algorithm
The conventional learning algorithm [2],[3] is applied. wkj(n, l) are updated by

wkj(n + 1, l) = wkj(n, l) + Δwkj(n, l) (3)

Δwkj(n, l) = η{wkj(n, l) −
Kw−1∑
q=0

ϕ(yk(n))yp(n − l + q)wpj(n, q)}, p �= j (4)

ϕ(yk(n)) is a probability density function of yk(n). In the above algorithm, the
signal distortion is likely caused. A technique to suppress the signal distortion
has been proposed [8]. First, wkj(n+1, l) are updated following Eqs.(3) and (4).
Second, wjj(n + 1, l) are modified as follows:

wjj(n + 1, l) = (1 − α)w̃jj(n + 1, l) + αw̄jj(n + 1, l), 0 < α ≤ 1 (5)

w̃jj(n+1, l) are updated by Eqs.(3) and (4). w̄jj(n+1, l) are determined by the
conditions of complete source separation and signal distortion free [8].

3 Feed-Back BSS

3.1 Block Diagram and Input-Output Relations
A block diagram of the FB-BSS is shown in Fig.2(Left) [1]. The separation block
employs an FIR filter shown in Fig.2(Right).
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Fig. 2. (Left) Block diagram of FB-BSS. (Right) FIR filter used for C21(z) and C12(z)

Since a feed-back loop in a discrete time system needs at least one sample
delay, a direct path from the input to the output is not used in the FIR filter,
that is ckj(0) = 0. The outputs of the separation block are expressed by

yk(n) = xk(n) −
N∑

j=1
�=k

Kc−1∑
l=1

ckj(l)yj(n − l) (6)

3.2 Learning Algorithm

The update equation of ckj(n, l) was proposed by Jutten et al by using the
Kullback-Leibler mutual information, and is shown here [1]. f(yk(n)) and g(yj(n−
l)) are different odd functions. One of them is at least a nonlinear function.

ckj(n + 1, l) = ckj(n, l) + Δckj(n, l) (7)
Δckj(n, l) = μf(yk(n))g(yj(n − l)) (8)

4 Derivation of Learning Algorithm for FB-BSS Based
on Propagation Delay

A learning algorithm is derived based on the propagation delays in the mixing
process [5]. For simplicity, the FB-BSS having 2 sources, 2 sensors and 2 outputs,
as shown in Fig.2(Left), is taken into account. It is assumed that the propagation
delays of H11(z) and H22(z) are less than those of H21(z) and H12(z). This means
that the sensor of X1(z) locates close to S1(z), and that of X2(z) locates close
to S2(z). Thus, this assumption is actually acceptable.

The outputs of the separation block can be expressed by [5]
[

Y1(z)
Y2(z)

]
=

1

1 − C12(z)C21(z)

[
1 −C12(z)

−C21(z) 1

] [
H11(z) H12(z)
H21(z) H22(z)

][
S1(z)
S2(z)

]

=
1

1 − C12(z)C21(z)

[
H11(z) − C12(z)H21(z) H12(z) − C12(z)H22(z)
H21(z) − C21(z)H11(z) H22(z) − C21(z)H12(z)

] [
S1(z)
S2(z)

]
(9)



When source separation is complete, Ckj(z) and yk(n) have the following two
kinds of solutions (a) and (b).

hji = [hji(0), hji(1), · · · , hji(Kh − 1)]T (10)
si(n) = [si(n), si(n − 1), · · · , si(n − Kh + 1)]T (11)
(a) Non-diagonal elements are zero.

C12(z) =
H12(z)
H22(z)

C21(z) =
H21(z)
H11(z)

(12)

y1(n) = hT
11s1(n) y2(n) = hT

22s2(n) (13)
(b) Diagonal elements are zero.

C12(z) =
H11(z)
H21(z)

C21(z) =
H22(z)
H12(z)

(14)

y1(n) = hT
12s2(n) y2(n) = hT

21s1(n) (15)

From the assumption regarding the delay of Hji(z), C21(z) and C12(z) in (a)
have a positive delay, that is, they are causal systems. On the other hand, C21(z)
and C12(z) in (b) have a negative delay, resulting in non-causal systems, which
cannot be realizable. For this reason, S1(z) cannot be cancelled at X1(z). In
the same manner, S2(z) cannot be cancelled at X2(z). This means that the
diagonal elements of Eq.(9) cannot be cancelled by adjusting Cjk(z). On the
other hand, S2(z) and S1(z) can be cancelled at X1(z) and X2(z), respectively.
In other words, the non-diagonal elements of Eq.(9) can be cancelled. Combining
these properties, the power of the separation block outputs can be set as a cost
function. Applying the gradient method, the same learning algorithm as shown
in Eqs.(7) and (8) can be derived [5].

5 Analysis of Source Separation Based on Propagation
Delay in Mixing Process

5.1 Effects of Propagation Delay on Learning FB-BSS
It is also assumed that, in the FB-BSS shown in Fig.2, S1(z) and S2(z) are
separated at Y1(z) and Y2(z), respectively. This does not lose generality. Source
separation performance of the FB-BSS is determined by the following conditions.

1. S2(z) and S1(z) should be cancelled at X1(z) and X2(z), respectively.
2. S1(z) and S2(z) should be preserved at X1(z) and X2(z), respectively.

As discussed in Sec.4, the learning of the FB-BSS is equivalent to minimize
the output powers. If the delay of C12(z)H21(z) is large enough compared to
that of H11(z), then the S1(z) component cannot be cancelled at X1(z), and can
be separated at Y1(z). This means that the power of Y1(z) can be minimized by
cancelling the S2(z) components at X1(z). Situation is the same as in minimizing
the power of Y2(z). In these cases, Ckj(z) converge to the optimal solutions given
by Eq.(12). When difference between the delays of C12(z)H21(z) and H11(z) is
not large enough, correlation between C12(z)H21(z)S1(z) and H11(z)S1(z) will



be increased. As a result, some cancellation between them can be possible. In
other words, the power of Y1(z) can be minimized by reducing not only the S2(z)
component but also the S1(z) component. In this situation, Ckj(z) are shifted
from the optimal solutions given by Eq.(12) toward the undesirable solutions
given by Eq.(14), resulting in poor source separation performances.

First, the condition (1) is taken into account. As shown in Fig.2, the transfer
functions Ckj(z) require at least one sample delay, corresponding to z−1. There-
fore, in order to cancel S2(z) at X1(z), the difference between the delays of H21

and H11(z) should be equal to or larger than one sample delay. If this condition
is not sufficiently satisfied, S2(z) cannot be well cancelled. The same situation
is held in X2(z).

Next, the condition (2) is taken into account. Preserving the S1(z) compo-
nent in X1(z), at the same time, in Y1(z), is highly dependent on the difference
between the delays of C12(z)H12(z) and H11(z). Here, the signal is simply de-
noted u(n) for convenience. The sampling frequency of u(n) is denoted fs. In
order to consider the delay difference less than the sampling period T = 1/fs, the
sampling frequency fs is converted to Kfs, K > 1. This up-sampling is carried
out by inserting zero samples and band limitation. Let uz(n) be the up-sampled
signal by inserting K −1 zero samples between the u(n) samples. The frequency
component of u(n) is assumed to be distributed in 0 ∼ fs/m. uz(n) is band
limited by using the ideal filter, whose pass band is 0 ∼ fs/m and the sampling
frequency is Kfs. An impulse response of this ideal filter is given by

φ(n) =
2

Km

sin
(

2π
Kmn

)
2π

Kmn
(16)

φ(n) is regarded as an interpolation function. Let the band limited signal be
uK(n), which is a convolution sum of uz(n) and φ(n) as shown below.

uK(n) =
n∑

k=0

φ(n − k)uz(k) (17)

5.2 Canceling uK(n) by Using uK(n − l)
In this case, the delay difference is l samples under the sampling frequency
of Kfs. We will consider cancelation of S1(z) at X1(z) depending on delay
difference. In this case, uK(n) and uK(n − l) can be regarded as h11(n) ∗ s1(n)
and c12(n) ∗ h21(n) ∗ s1(n), respectively. The operation ∗ is a convolution sum.
Since amplitude and phase responses of the signals can be adjusted by Cjk(z),
an effect of the delay difference is only taken into account in this section.

Cancelation of uK(n) by using uK(n − l) can be expressed by

uK(n) − uK(n − l) =
n∑

k=0

φ(n − k)uz(k) −
n∑

k=0

φ(n − k − l)uz(k)

=
n∑

k=0

[φ(n − k) − φ(n − k − l)]uz(k) (18)



From the above equation, the cancelation of uK(n) can be evaluated by
[φ(n − k) − φ(n − k − l)], which is equivalent to φ(l). φ(l) becomes zero at
l = Km/2, and takes small value after that. Therefore, as a rule of thumb,
the delay difference, with which uK(n) can be cancelled by using uK(n − l), is
less than a Km/2 sample delay under the sampling frequency of Kfs, which is
equivalent to an m/2 sample delay with the fs sampling frequency.

An example of φ(n) is shown in Fig.3, in which m = 4 and K = 4. In this

-16 -12 -8 -4 0 4 8 12 16

φ(n)

Fig. 3. Example of interpolation function φ(n) with m = 4 and K = 4.

figure, one scale on the horizontal axis indicates T/K sec and 4(= K) scales
corresponds to T sec. φ(n) takes zero at 8 samples(×T/K) and 2 samples(×T ),
and takes small values after these points.
(Example 1)
Let fs = 8kHz and the frequency components of the signal are distributed un-
der 1kHz. Since fs/m = 1kHz and m = 8, if the delay difference between
C12(z)H12(z) and H11(z) is larger than m/2 = 4 samples, then cancellation of
S1(z) at X1(z) is small. Since Ckj(z) have 1 sample delay, by assigning 3 samples
delay between H21(z) and H11(z), the above conditions (1) and (2) can be si-
multaneously satisfied. In this case, the source separation performance is mainly
determined by the condition(2).
(Example 2)
Let fs = 8kHz and the frequency component of the signal is distributed un-
der 4kHz. Since fs/m = 4kHz and m = 2, if the delay difference between
C12(z)H12(z) and H11(z) is more than m/2 = 1 samples, then the cancelation
of S1(z) at X1(z) is small. Since Ckj(z) has 1 sample delay, the delay differ-
ence between H21(z) and H11(z) is not necessary. However, in order to satisfy
the condition(1), at least 1 sample delay is required. In this case, the source
separation performance is mainly determined by the condition(1).

5.3 Cancelation of uK(n) Evaluated by Correlation
The cancelation of uK(n) by using uK(n− l) can be also evaluated by the mean
square of φ(n − k) − φ(n − k − l) as follows:

E[(φ(n − k) − φ(n − k − l))2]
= E[φ2(n − k)] − 2E[φ(n − k)φ(n − k − l)] + E[φ2(n − k − l)] (19)

The delay difference of interest is a few samples delay, that is l is a small integer.
Therefore, E[φ2(n − k)] and E[φ2(n − k − l)] are almost the same. They are



denoted E[φ2(n − k)] here. The above equation is further rewritten as

2E[φ2(n − k)] − 2E[φ(n − k)φ(n − k − l)]

= 2E[φ2(n − k)]
(

1 − E[φ(n − k)φ(n − k − l)]
E[φ2(n − k)]

)
(20)

Since E[φ2(n − k)] is the signal power, it is not related to the cancelation of
uK(n). From the above equation, if a correlation of uK(n−k) and uK(n−k− l),
that is E[φ(n − k)φ(n − k − l)]/E[φ2(n − k)] is close to 1, then S1(z) is well
cancelled at X1(z). Simulations in Sec.6.2, the correlation of h11(n) ∗ s1(n) and
h21(n) ∗ s1(n) is used to evaluate the cancelation of S1(z) at X1(z).

On the contrary, in the FF-BSS, the propagation delays in the mixing process
do not affect the source separation performance.

5.4 Effects of Fractional Propagation Delays
The propagation delay in the mixing process is not always an integer times of
the sampling period T = 1/fs. It may be sometime a fractional period. This
means the transfer functions Hji(z) in the mixing process cannot be expressed
by a rational function of z−1. On the other hand, the FIR filters used in the
separation block are implemented with the sampling frequency of fs = 1/T ,
and their transfer function are expressed by a power series of z−1. Therefore, if
the propagation delay is not an integer times of T , the FIR filter cannot realize
the inverse function of the mixing process, as a result, the source separation
performance is degraded. This point is also investigated through simulation.

6 Simulations and Discussions

6.1 Simulation Setup
2-channel and 3-channel models are used. Simulation results only for the 2-
channel model are demonstrated due to page limitation. The sampling frequency
is fs = 8kHz. White signals and speech signals, whose spectrum is shown in
Fig.4(Left), are used as the sources. Figure 4(Right) shows a mixing process.

z -τ

z -τ

H11

H12
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H22

S 1

S 2

X1

X2

Fig. 4. (Left) Spectrum of speech signal. (Right) Mixing process with delay difference.

The delay difference between Hjj(z) and Hji(z), j �= i is realized by τ . Two
kinds models for Hji(z) are used. One of them is an instantaneous mixing process



shown in Eq.(21) and the other is an approximately actual room environment.
The source separation is evaluated by the Signal-to-Interference Ratio (SIR [dB])
given by Eq.(24). Aki(z) is a transfer function from the ith signal source to the
kth output of the separation block.

H(z) =
[

1 0.9
0.9 1

]
(21)

σ2
s =

1
2π

N∑
i=1

∫ π

−π

|Aii(ejω)Si(ejω)|2dω (22)

σ2
i =

1
2π

N∑
k=1

N∑
i=1
�=k

∫ π

−π

|Aki(ejω)Si(ejω)|2dω (23)

SIR = 10 log10

σ2
s

σ2
i

[dB] (24)

6.2 Instantaneous and Propagation Delay Model
Figure 5 shows the SIR and the correlation by using Eq.(21) and the white
signal sources. ’Delay difference’ means τ in Fig.4. C12(z) has one sample delay

Fig. 5. White signal sources. (Left) Correlation between h11(n) ∗ s1(n) and h21(n) ∗
s1(n). (Right) SIR with respect to τ .

as shown in Fig.2(Right), the delay difference at X1(z) becomes τ + 125μs. The
cancelation of S1(z) at X1(z) should be evaluated by τ +125μs. The band width
of the white signal is 4kHz, and m = 2 as discussed in Sec.5.1. The interpolation
function is given by

φ(n) =
1
K

sin
(

2π
2K n

)
2π
2K n

(25)

φ(n) takes zero at every K samples, which correspond to one sample with the
8kHz sampling frequency. Since the white signals are sampled by 8kHz, there is
no correlation between the samples. The correlation shown in Fig.5(Left) is also
similar to φ(n) given by Eq.(25). As described in Sec.5.1, the rule of thumb for
the delay difference, with which the condition(2) is satisfied, is the m/2 sample
delay, which is one sample delay under the 8kHz sampling frequency. Since C12(z)



and C21(z) include one sample delay, the condition(2) is satisfied by using τ=0.
However, the condition(1) requires τ ≥ one sample delay. Therefore, the SIR
converges to high level at τ=125μs. Like this, in the case of the white signals,
the condition(1) is dominant to achieve a high SIR. This situation is exactly the
same as Example 2 in Sec.5.1.

The SIR has peaks at every τ = 125μs. This is due to no correlation at these
points. Furthermore, the mixing process can be expressed as a rational function
of z−1, whose inverse function can be approximated by the separation block,
which is implemented with the 8kHz sampling frequency.

6.3 Convolutive and Propagation Delay Model

The mixing process similar to actual audio environment is used. Hji(z) have no
delay difference. The delay difference is also realized by τ in Fig.4.

Figure 6 shows simulation results for the speech signal sources. The correla-
tion becomes zero around 400μs. From the analysis in Sec.5.1, 125μs× (m/2) =
400μs, and m � 6.4. This is due to the frequency component of the speech
signals, which is mainly distributed under 8kHz/6.4� 1.25kHz as shown in
Fig.4(Left). The SIR is gradually increased until τ=350μs. The delay difference
at X1(z) becomes (350 + 125)μs = 475μs, which approximately corresponds to
m/2 sample delay difference. In this case, the condition(2) is dominant. This
case corresponds to Example 1 in Sec.5.1.

Fig. 6. Speech signal sources. (Left) Correlation between h11(n) ∗ s1(n) and h21(n) ∗
s1(n). (Right) SIR with respect to τ .

The SIR of the FF-BSS is not affected by the delay difference τ , and it is
almost constant with respect to τ .

The simulation results for the 3-channel model are almost similar to those of
the 2-channel model.

6.4 Delay Difference Based on Location of Signal Sources and
Sensors.

A relation between the delay difference and location of the sources and the
sensors is investigated taking sound propagation time into account. A layout of
them shown in Fig.7(Left) is taken into account. Relations of the delay differences
and the layouts are shown in Fig.7(Right). The FB-BSS can provide better
performances with τ=125μs, which is generated by L2 = 5, 9, 25cm for (L1, D) =
(300, 100)cm, (100, 100)cm and (100, 300)cm, respectively.
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ing on layout of signal sources and sensors.

7 Conclusions

The source separation performance of the FB-BSS is theoretically analyzed based
on the propagation delay difference in the mixing process. It is determined by
two conditions, canceling the interferences and preserving the desired source,
which are highly dependent on the delay difference in the mixing process. Sim-
ulation results using white signal sources and speech signal sources support the
theoretical analysis. Furthermore, a relation between the delay difference and
the layout of the sources and sensors is discussed. The layout conditions, which
are useful for the FB-BSS or the FF-BSS, are derived.
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