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ABSTRACT

In order to achieve fast convergence and less computation for
adaptivefilters, ajoint method combining a whitening process and
the NLMS algorithm is a hopeful approach. One of them is to
combine a lattice predictor and a transversal filter supervised by
the NLMS algorithm. However, the filter coefficdent adaptation
is very sendtive to the reflection coefficient fluctuaion. In this
paper, the reason of this instability is analyzed. The filter coef-
ficients are updated one sample behind the reflection coefficient
update. This causeslarge error, in other words, sensitivity of their
mismatch isvery high on filter characteristics. Animproved learn-
ing method is proposed in order to compensate for this mismatch.
The convergence property is close to that of the RLS algorithm.
Computational complexity can be well reduced from that of the
RLS agorithm. Simulation results using real voices demonstrate
usefulness of the proposed method.

1. INTRODUCTION

AsVLSI technology hasbeendevel oped, adaptivefilters havebeen
applied to audio acoustic processing, control systems, telecommu-
nication sysems, and others. Among them, acoustic echo cancd-
lation and noise cancelation are very important.

When very high-order adaptive filters are required, fast con-
vergence and less computation for real signds are very important.
Thenormalized LMS (NLMS) a gorithm can beimplemented with
less computation. However, a very long time is required for con-
vergence. On the contrary, the recursive least squires (RLS) algo-
rithm can converge fast, at the expense of computational complex-
ity.

One method to overcome this problem is to join a whiten-
ing process and the NLM S algorithm. The whitening process in-
cludes orthogonal transform and linear prediction [1-6]. The for-
mer method requires many frequency bands in order to realize
good orthogondization [1-3]. A lattice predictor is used in the
latter method [1,4-5]. Order of the predictor is determined by that
of an AR model generating the input signal, which is not so high.
Therefore, this method is hopeful. However, filter coefficient adap-
tation is unstable due to the reflection coefficient fluctuation. Even
though the | attice predictor workswell, the output error cannot be
well reduced. Any methods to stabilize convergence for reflection
coefficient fluctuation have not been proposed.

In this paper, thelearning processof the lattice predictor based
NLMS algorithm is analyzed based on arelation between the re-
flectionandfilter coefficient update. A reason of the unstable adap-
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Fig. 1. Lattice-based structure for joint-process filter of order M

tation is clarified. Based on this analysis, a synchronized algo-
rithm for reflection coefficients and tap weights is proposed. This
method can achieve fast convergence like the RLS algorithm with
a moderate number of computations. Computer simulation using
real voice will be demonstrated to confirm usefulness of the pro-
posed learning method.

2. AJOINT LATTICE PREDICTOR AND NLMS
TRANSVERSAL ADAPTIVEFILTER

Figure 1 shows a block diagram. The 1st-stageis the lattice pre-
dictor and the 2nd-stage is the transversdl filter.

fm(n) andb,, (n) aretheforward and the backward prediction
errors, respectively, at the mth-stage and the nth-sample. They are
calculated by the following recursive formulas.

Fn(n) = Fonr () 4 K (Wbmoa(n = 1) (D)

b (n) =bm_1(n — 1) + km(n) fra—1(n) 2
m=1,2... . M-1
fo(n) =bo(n) = u(n). (€©)

tm(n) is the reflection coefficient at the mth-stage and the nth-
sample.

Theinput signd for the transversal filter is the backward pre-
diction error b, (n). Letting b(n), w(n) and y(n) be the back-
ward prediction error, thefilter coeffidents and the output, respec-
tively, they arerelated by

b(n) = [bo(n), .., bar—1(n)]" 4



w(n) = [wo(n), ..., war—1(n)]" ®)
y(n) = w" (n)b(n). (6)

3. ANALYSISOF LEARNING PROCESS

3.1. Update of Reflection Coefficients

The reflection coefficient «,,(n) is determined so as to minimize
the following prediction error.

Im = E | fm()*] + B [[bm(n)]] - @)

From the condition,
OJm

Okm(n)

=0 )
km(n) isgiven by

fom(n) = — 2E[bpm—1(n — 1) fm_1(n)] .

" Ellfm-1(n)]? 4+ bp-1(n — 1)]%]

Furthermore, letti ng the numerator and the denominator be
—26n,m(n) and & p m(n), respectively, they are approximately
updated by

©)

knm(n) = (1=7)(vkym(n—1)
+bmo1(n—1)fm_1(n)) (10
kpm(n) = (1=7)(vkpm(n—1)

+ (|fm-1()]* 4 [bms(n = D)) (12)
1>~>0 (12

3.2. Updateof Filter Coefficients
Thefilter coefficients are updated by the NLM Salgorithm asshown

in
e(n) = d(n) - y(n) (13)

«a isastep sizeand § isasmall positive number. The other algo-
rithms can be also employed.

3.3. Relation between Reflection and Filter Coefficient Update

km(n) isupdated at the nth-sample, and will be used at the (n +
1)th-sample. b(rn) isobtained by using « . (n — 1), that is the pre-
vious values. Thefilter coefficients are updated at the nth-sample
using b(n) resulting w(n+1), whichwill beused at the (n+1)th-
sample.

In Eq.(14), e(n) and b(n) are obtained using & (n — 1), not
tm(n). Thismeansthefilter coefficientsw(n + 1) canreducethe
cost function in collaboration with £, (n — 1), not with k., (n).
However, at the (n 4 1)th-sample, w(n + 1) is combined with
£m(n) to generatethe output y(rn+1). Thismeansthefilter coeffi-
cient updae is always one sample behind the reflection coefficient
update.

Thisrelation isheld when & ,,, () isused to generate b(n) and
e(n). Theindex onthetime axisisonly shifted. Anessential point
isthefact that the reflection coefficients used in updating w(n+1)
and in generating the filter output y(n + 1) together with w(n + 1)
are different.

Theserelations are shownin Fig.2.
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Fig. 2. Flow diagram of updating reflection coefficients and tap
coeffidents.

4. AN IMPROVED LEARNING METHOD

4.1. Transfer Function Representation

The transfer function of the joint adaptive filter shown in Fig.1
condsts of the reflection coefficients and the filter coeffidients. In
this section, an equivalent transfer function in the time domain is
obtained.

First, b(n) isexpressed by

b(n) = K7 (n)u(n) (15)

u(n) = [u(n),...,u(n—M—l—l)]T. (16)

Here, K (n) hasthe following structure.

1 [(172(71) [(173(71) I(lyM(n)
0 1 [(273(71) [X727M(n)
K(n) = 1
0 0 . . [X’M_lyM(n)
0 0 0 1
(17)

Ki2(n) = ki(n) (18)
Ki3(n) = k3(n) (219

K> 3(n) = k3 (n)k1(n) + &i(n —1) (20)
Ki4(n) = k3(n) (21)

[>4(n) = r3(n)(k1(n) + ka(n)ri(n = 1)) + sz (n— 1) (22)

Ks4(n) = k3 (n)r2(n)+x5(n—1)k1(n—1)+x] (n—2). (23)
Using the above expresson, thefilter output is given by

y(n) = w” ()K" (nju(n). (24

In this expresson, w ™ (n) K (n) representsthe equivalent trans-

fer function in the time domain. * and H indicate complex conju-
gate and Hermiti an transposition, respectively.
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Fig. 3. Flow diagram of the modified filter coefficients
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4.2. Compensation of Filter Coefficients

From the discussonsin the previous section, w(n + 1) is updated
using K (n), therefore, the following output at the next samplecan
reduce the cost function.
gn+1) = 'wH(n + I)KH(n)u(n +1). (25)
However, K (n) isupdated at the (n+ 1)th-sample, thenthe actual
output becomes
y(n+1) = 'wH(n + I)KH(n + lu(n+1). (26)
y(n 4 1) cannot reduce the error well. In order to overcome this

mismatch, the filter coefficients are modified so that the equivalent
transfer function satisfies Eg.(25). That is,

K(n+1)w(n+1) = K(n)w(n+1). 27)
From this condition, we obtain
w(n+1)= K_l(n—l—l)K(n)'w(n—l—l). (28)

This modified filter coefficients will be used at the (n + 1)th-
sampleto generate b(rn + 1) and y(n + 1). The coefficients updae
and modification processes are shownin Fig.3.

4.3. Computational Complexity

Equation (28) requiresinverse matrix operation. However, the ma-
trix K (n) is an upper triangle matrix, in which the diagonal ele-
ments are unity. In addition, the order of the lattice predictor de-
pends on the input signal model, not on the unknown system. For
example, in the case of voice, the signd generation process can
be modeled by using approximately a 20th-order AR model. This
means K (n) isalso aband matrix. Taking thesepropertiesinto ac-
count, the computational complexity can bereducedinto O(L M),
where L is the order of the AR model for the input signal. In the
case of acougtic echo canceller, usudly M = 1000 ~ 4000 and
L = 20, then the computational load is well reduced compared
with that of the RLS algorithm. Table 1 lists the number of com-
putations of the proposed and the conventional algorithms. “Con-
ventional Lattice” indicates the joint adaptive filter, which has the
same structure as the proposed method. However, the filter coeffi-
cients are updated one-sample behind the reflection coefficients.

Table 1. Comparison of LMS Algorithm with Preceding Lattice
Predictor

| Multiplier | Adder
Proposed 2ML +5M +9L | 2ML +4M + 5L
Con. Lattice 5M +9L 4M + 5L
NLMS 5M 4M
RLS 3M® +4M 2M”° +3M
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Fig. 4. (a)lmpulse response of unknown sysem (b)Frequency re-
sponse of unknown system.

5. SIMULATION AND DISCUSSIONS

5.1. Simulation Problem

Simulation was carried out based on system identification. An
unknown system is the 12th-order |IR lowpass filter. The ampli-
tude response and the impul se response are shown in Figs.4(a) and
4(b), respectively. The impulse response spreads over 50 samples.
Therefore, the adaptivefilter length M issetto 50 taps. TheNLMS
algorithm and the RL S algorithm are used for comparison.

5.2. Colored Input Signal

Colored signa is generated through a 2nd-order AR model with
the white noise input. The amplitude response of the AR model
isshownin Fig.5. In the joint adaptive filter and the NLMS algo-
rithm, o = 1,6 = 0.001, v = 0.999, and A = 0.95 inthe RLS
algorithm.

The learning curves are shown in Fig.6. The “Conventional
Lattice” cannot converge. The error is saturated at —40dB due to
the one-sample delay mismatch. The learning curve of the pro-
posed method is closeto that of the RLS algorithm. This means
the one-sample delay can be compensated for, at the same time,
theinput signal whitening by the lattice predictor is successful.
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Fig. 5. Amplitude response of 2nd-order AR model.
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Fig. 6. Learning curvesfor colored noise.

5.3. Voice Input Signal

The voice signal used in the simulation is shown in Fig.7. A sam-
pling frequency is 8kHz, then 20, 000 samples mean 2.5 seconds.
Figure 8 shows the learning curves. The proposed method can
catch up with the RLS at 2000 iterations. The number of itera-
tionsisthe same asthat of the signal samples On the contrary, the
NLMS agorithm requires 10000 samplesuntil converge.

From these simulation results, the proposed method is useful
for both stationary and nonstationary processes. Its convergence
spead is closeto that of the RLS.

6. CONCLUSIONS

Joint adaptive filters combining awhitening processandthe NLM S
transversal filter is useful to make convergence speed fast with
less computation. However, the lattice predictor based adaptive
filter has the instability problem. In this paper, the reason of the
instability has been clarified. In the conventional method, the fil-
ter coefficients are updated one-sample behind the reflection co-
efficients. Sensitivity of this one-sample delay mismatch is very
high. The synchronized learning algorithm has been proposed to
compensate for this mismatch. The computer simulation using the
colored signd and the voice signal demonstrate that the proposed
method can converge fast like the RLS with less computations
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