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ABSTRACT

In order to achieve fast convergence and less computation for
adaptive filters, a joint method combining a whitening process and
the NLMS algorithm is a hopeful approach. One of them is to
combine a lattice predictor and a transversal filter supervised by
the NLMS algorithm. However, the filter coefficient adaptation
is very sensitive to the reflection coefficient fluctuation. In this
paper, the reason of this instability is analyzed. The filter coef-
ficients are updated one sample behind the reflection coefficient
update. This causes large error, in other words, sensitivity of their
mismatch is very high on filter characteristics. An improved learn-
ing method is proposed in order to compensate for this mismatch.
The convergence property is close to that of the RLS algorithm.
Computational complexity can be well reduced from that of the
RLS algorithm. Simulation results using real voices demonstrate
usefulness of the proposed method.

1. INTRODUCTION

As VLSI technology has been developed, adaptive filters have been
applied to audio acoustic processing, control systems, telecommu-
nication systems, and others. Among them, acoustic echo cancel-
lation and noise cancelation are very important.

When very high-order adaptive filters are required, fast con-
vergence and less computation for real signals are very important.
The normalized LMS (NLMS) algorithm can be implemented with
less computation. However, a very long time is required for con-
vergence. On the contrary, the recursive least squires (RLS) algo-
rithm can converge fast, at the expense of computational complex-
ity.

One method to overcome this problem is to join a whiten-
ing process and the NLMS algorithm. The whitening process in-
cludes orthogonal transform and linear prediction [1–6]. The for-
mer method requires many frequency bands in order to realize
good orthogonalization [1–3]. A lattice predictor is used in the
latter method [1,4–5]. Order of the predictor is determined by that
of an AR model generating the input signal, which is not so high.
Therefore, this method is hopeful. However, filter coefficient adap-
tation is unstable due to the reflection coefficient fluctuation. Even
though the lattice predictor works well, the output error cannot be
well reduced. Any methods to stabilize convergence for reflection
coefficient fluctuation have not been proposed.

In this paper, the learning process of the lattice predictor based
NLMS algorithm is analyzed based on a relation between the re-
flection and filter coefficient update. A reason of the unstable adap-
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Fig. 1. Lattice-based structure for joint-process filter of order M

tation is clarified. Based on this analysis, a synchronized algo-
rithm for reflection coefficients and tap weights is proposed. This
method can achieve fast convergence like the RLS algorithm with
a moderate number of computations. Computer simulation using
real voice will be demonstrated to confirm usefulness of the pro-
posed learning method.

2. A JOINT LATTICE PREDICTOR AND NLMS
TRANSVERSAL ADAPTIVE FILTER

Figure 1 shows a block diagram. The 1st-stage is the lattice pre-
dictor and the 2nd-stage is the transversal filter.

fm(n) and bm(n) are the forward and the backward prediction
errors, respectively, at themth-stage and the nth-sample. They are
calculated by the following recursive formulas.

fm(n) = fm�1(n) + �
�

m(n)bm�1(n� 1) (1)

bm(n) = bm�1(n� 1) + �m(n)fm�1(n) (2)

m = 1; 2; : : : ;M � 1

f0(n) = b0(n) = u(n): (3)

�m(n) is the reflection coefficient at the mth-stage and the nth-
sample.

The input signal for the transversal filter is the backward pre-
diction error bm(n). Letting b(n), w(n) and y(n) be the back-
ward prediction error, the filter coefficients and the output, respec-
tively, they are related by

b(n) = [b0(n); : : : ; bM�1(n)]
T (4)



w(n) = [w0(n); : : : ; wM�1(n)]
T (5)

y(n) = wH(n)b(n): (6)

3. ANALYSIS OF LEARNING PROCESS

3.1. Update of Reflection Coefficients

The reflection coefficient �m(n) is determined so as to minimize
the following prediction error.

Jm = E
�
jfm(n)j

2
�
+E

�
jbm(n)j

2
�
: (7)

From the condition,
@Jm

@�m(n)
= 0 (8)

�m(n) is given by

�m(n) = �
2E[bm�1(n� 1)f�m�1(n)]

E[jfm�1(n)j2 + jbm�1(n� 1)j2]
: (9)

Furthermore, letting the numerator and the denominator be
�2�N;m(n) and �D;m(n), respectively, they are approximately
updated by

�N;m(n) = (1� 
) (
�N;m(n � 1)

+ bm�1(n� 1)f�m�1(n)) (10)

�D;m(n) = (1� 
) (
�D;m(n� 1)

+
�
jfm�1(n)j

2 + jbm�1(n� 1)j2
��

(11)

1 > 
 > 0 (12)

3.2. Update of Filter Coefficients

The filter coefficients are updated by the NLMS algorithm as shown
in

e(n) = d(n)� y(n) (13)

w(n+ 1) = w(n) +
�

kb(n)k2 + Æ
b(n)e(n): (14)

� is a step size and Æ is a small positive number. The other algo-
rithms can be also employed.

3.3. Relation between Reflection and Filter Coefficient Update

�m(n) is updated at the nth-sample, and will be used at the (n +
1)th-sample. b(n) is obtained by using �m(n� 1), that is the pre-
vious values. The filter coefficients are updated at the nth-sample
using b(n) resultingw(n+1), which will be used at the (n+1)th-
sample.

In Eq.(14), e(n) and b(n) are obtained using �m(n � 1), not
�m(n). This means the filter coefficientsw(n+1) can reduce the
cost function in collaboration with �m(n � 1), not with �m(n).
However, at the (n + 1)th-sample, w(n + 1) is combined with
�m(n) to generate the output y(n+1). This means the filter coeffi-
cient update is always one sample behind the reflection coefficient
update.

This relation is held when �m(n) is used to generate b(n) and
e(n). The index on the time axis is only shifted. An essential point
is the fact that the reflection coefficients used in updatingw(n+1)
and in generating the filter output y(n+1) together withw(n+1)
are different.

These relations are shown in Fig.2.
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Fig. 2. Flow diagram of updating reflection coefficients and tap
coefficients.

4. AN IMPROVED LEARNING METHOD

4.1. Transfer Function Representation

The transfer function of the joint adaptive filter shown in Fig.1
consists of the reflection coefficients and the filter coefficients. In
this section, an equivalent transfer function in the time domain is
obtained.

First, b(n) is expressed by

b(n) =KH(n)u(n) (15)

u(n) = [u(n); : : : ; u(n�M + 1)]T : (16)

Here,K(n) has the following structure.

K(n) =

2
666664

1 K1;2(n) K1;3(n) � � � K1;M (n)
0 1 K2;3(n) � � � K2;M (n)
...

. . . 1
. . .

...

0 0
. . .

. . . KM�1;M(n)
0 0 0 � � � 1

3
777775

(17)

K1;2(n) = �
�

1(n) (18)

K1;3(n) = �
�

2(n) (19)

K2;3(n) = �
�

2(n)�1(n) + �
�

1(n� 1) (20)

K1;4(n) = �
�

3(n) (21)

K2;4(n) = �
�

3(n)(�1(n) + �2(n)�
�

1(n� 1)) + �
�

2(n� 1) (22)

K3;4(n) = �
�

3(n)�2(n)+�
�

2(n�1)�1(n�1)+��1 (n�2): (23)

Using the above expression, the filter output is given by

y(n) = w
H(n)KH(n)u(n): (24)

In this expression,wH(n)KH(n) represents the equivalent trans-
fer function in the time domain. � and H indicate complex conju-
gate and Hermitian transposition, respectively.
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Fig. 3. Flow diagram of the modified filter coefficients

4.2. Compensation of Filter Coefficients

From the discussions in the previous section, w(n+1) is updated
usingK(n), therefore, the following output at the next sample can
reduce the cost function.

ŷ(n+ 1) = w
H(n + 1)KH(n)u(n+ 1): (25)

However,K(n) is updated at the (n+1)th-sample, then the actual
output becomes

y(n + 1) = w
H(n+ 1)KH(n+ 1)u(n+ 1): (26)

y(n + 1) cannot reduce the error well. In order to overcome this
mismatch, the filter coefficients are modified so that the equivalent
transfer function satisfies Eg.(25). That is,

K(n+ 1)ŵ(n+ 1) =K(n)w(n+ 1): (27)

From this condition, we obtain

ŵ(n+ 1) =K
�1(n+ 1)K(n)w(n+ 1): (28)

This modified filter coefficients will be used at the (n + 1)th-
sample to generate b(n+1) and y(n+1). The coefficients update
and modification processes are shown in Fig.3.

4.3. Computational Complexity

Equation (28) requires inverse matrix operation. However, the ma-
trix K(n) is an upper triangle matrix, in which the diagonal ele-
ments are unity. In addition, the order of the lattice predictor de-
pends on the input signal model, not on the unknown system. For
example, in the case of voice, the signal generation process can
be modeled by using approximately a 20th-order AR model. This
meansK(n) is also a band matrix. Taking these properties into ac-
count, the computational complexity can be reduced intoO(LM),
where L is the order of the AR model for the input signal. In the
case of acoustic echo canceller, usually M = 1000 � 4000 and
L = 20, then the computational load is well reduced compared
with that of the RLS algorithm. Table 1 lists the number of com-
putations of the proposed and the conventional algorithms. “Con-
ventional Lattice” indicates the joint adaptive filter, which has the
same structure as the proposed method. However, the filter coeffi-
cients are updated one-sample behind the reflection coefficients.

Table 1. Comparison of LMS Algorithm with Preceding Lattice
Predictor

Multiplier Adder

Proposed 2ML + 5M + 9L 2ML+ 4M + 5L
Con. Lattice 5M + 9L 4M + 5L

NLMS 5M 4M
RLS 3M2 + 4M 2M2 + 3M
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Fig. 4. (a)Impulse response of unknown system (b)Frequency re-
sponse of unknown system.

5. SIMULATION AND DISCUSSIONS

5.1. Simulation Problem

Simulation was carried out based on system identification. An
unknown system is the 12th-order IIR lowpass filter. The ampli-
tude response and the impulse response are shown in Figs.4(a) and
4(b), respectively. The impulse response spreads over 50 samples.
Therefore, the adaptive filter lengthM is set to 50 taps. The NLMS
algorithm and the RLS algorithm are used for comparison.

5.2. Colored Input Signal

Colored signal is generated through a 2nd-order AR model with
the white noise input. The amplitude response of the AR model
is shown in Fig.5. In the joint adaptive filter and the NLMS algo-
rithm, � = 1, Æ = 0:001, 
 = 0:999, and � = 0:95 in the RLS
algorithm.

The learning curves are shown in Fig.6. The “Conventional
Lattice” cannot converge. The error is saturated at �40dB due to
the one-sample delay mismatch. The learning curve of the pro-
posed method is close to that of the RLS algorithm. This means
the one-sample delay can be compensated for, at the same time,
the input signal whitening by the lattice predictor is successful.
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Fig. 5. Amplitude response of 2nd-order AR model.
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Fig. 6. Learning curves for colored noise.

5.3. Voice Input Signal

The voice signal used in the simulation is shown in Fig.7. A sam-
pling frequency is 8kHz, then 20; 000 samples mean 2:5 seconds.
Figure 8 shows the learning curves. The proposed method can
catch up with the RLS at 2000 iterations. The number of itera-
tions is the same as that of the signal samples. On the contrary, the
NLMS algorithm requires 10000 samples until converge.

From these simulation results, the proposed method is useful
for both stationary and nonstationary processes. Its convergence
speed is close to that of the RLS.

6. CONCLUSIONS

Joint adaptive filters combining a whitening process and the NLMS
transversal filter is useful to make convergence speed fast with
less computation. However, the lattice predictor based adaptive
filter has the instability problem. In this paper, the reason of the
instability has been clarified. In the conventional method, the fil-
ter coefficients are updated one-sample behind the reflection co-
efficients. Sensitivity of this one-sample delay mismatch is very
high. The synchronized learning algorithm has been proposed to
compensate for this mismatch. The computer simulation using the
colored signal and the voice signal demonstrate that the proposed
method can converge fast like the RLS with less computations.
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Fig. 7. Input signal of voice.
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