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ABSTRACT

In order to achieve fast convergence and less computation for adap-
tive filters, a joint method combining a whitening process and the
NLMS algorithm is a hopeful approach. However, updating the
filter coefficients is not synchronized with the reflection coeffi-
cient updating resulting in unstable behavior. We analyzed effects
of this, and proposed the “Synchronized Learning Algorithm” to
solve this problem. Asynchronous error between them is removed,
and fast convergence and small residual error were obtained. This
algorithm, however, requires ����� computations, where � is
an adaptive filter length, and� is a lattice predictor length. It is still
large compared with the NLMS algorithm. In order to achieve less
computation while the fast convergence is maintained, a block im-
plementation method is proposed. The reflection coefficients are
updated at some period, and are fixed during this interval. The pro-
posed block implementation can be effectively applied to parallel
form adaptive filters, such as sub-band adaptive filters. Simulation
using speech signal shows that a learning curve of the proposed
block implementation a little slower than the our original algo-
rithm, but can save the computational complexity.

1. INTRODUCTION

As VLSI technology has been developed, adaptive filters have been
applied to audio acoustic processing, control systems, telecommu-
nication systems, and others. Among them, acoustic echo cancel-
lation and noise cancelation are very important.

When very high-order adaptive filters are required, fast con-
vergence and less computation for real signals are very important.
The normalized LMS (NLMS) algorithm can be implemented with
less computation. However, a very long time is required for con-
vergence. On the contrary, the recursive least squires (RLS) algo-
rithm can converge fast, at the expense of computational complex-
ity.

One method to overcome this problem is to join a whitening
process and the NLMS algorithm. The whitening process includes
orthogonal transform and linear prediction [1]–[6]. The former
method requires many frequency bands in order to realize good
orthogonalization [1]–[3]. A lattice predictor is used in the latter
method [1],[4],[5]. Order of the predictor is determined by that
of an equivalent AR model generating the input signal, which is
not so high compared with filter orders. However, in the origi-
nal adaptive lattice filters, updating the filter coefficients are not
synchronized with the reflection coefficient updating, resulting in
large residual errors.
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Fig. 1. A joint lattice and transversal filter (lattice predictor of
order L and adaptive filter of order M)

This problem was analyzed, and the ”Synchronized Learning
Algorithm” was proposed. The filter coefficients are compensated
for taking the reflection coefficient updating into account [7],[8].
This method, however, requires ����� computations, where �
is an adaptive filter length, and � is a lattice predictor length. Al-
though � � � is usually satisfied, ����� is still unpractical
requirement.

In this paper, a block implementation method is proposed in
order to save computations. The reflection coefficients are updated
at some period, and they are fixed during this interval. Computer
simulation using real voice signals will be demonstrated to confirm
usefulness of the proposed method.

2. JOINT LATTICE AND TRANSVERSAL ADAPTIVE
FILTER

2.1. Update of Reflection Coefficients

Figure 1 shows a block diagram of a joint lattice and transversal
filter. The 1st-stage is the lattice predictor and the 2nd-stage is the
transversal adaptive filter.

����� and ����� are the forward and the backward prediction
errors, respectively, at the �-th stage and the �-th sample. They
are calculated by the following recursive formulas.
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����� is the reflection coefficient at the �-th stage and the �-th
sample. � indicate complex conjugate. The reflection coefficient
����� is determined so as to minimize the following prediction
errors.

����� � �
���������� ����

�������

������������ � �������� �����
(4)

Furthermore, letting the numerator and the denominator be
��������� and �������, respectively, they are approximately
updated by
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2.2. Update of Filter Coefficients

The input signal for the transversal filter is the backward predic-
tion error �����. Letting ����, ���� and ���� be the backward
prediction error, the filter coefficients and the output, respectively,
they are related by

���� � ������	 
 
 
 	 ��������
� (7)

���� � ������	 
 
 
 	 ��������
� (8)

���� � �
��������
 (9)

� and  indicate Transposition and Hermitian transposition, re-
spectively.

The filter coefficients are updated by the NLMS algorithm as
shown in

���� � ����� ���� (10)

���� �� � ���� �
�

������� � Æ
��������
 (11)

� is a step size and Æ is a small positive number. The other algo-
rithms can be also employed.

2.3. Relation between Reflection and Filter Coefficient Update

����� is updated at the �-th sample, and will be used at the
�� � ��-th sample. ���� is obtained by using ���� � ��, that
is the previous values. The filter coefficients are updated at the �-
th sample using ���� resulting ��� � ��, which will be used at
the �� � ��-th sample.

In Eq.(11), ���� and ���� are obtained using ���� � ��, not
�����. This means the filter coefficients������ can reduce the
cost function in collaboration with ���� � ��, not with �����.
However, at the �� � ��-th sample, ��� � �� is combined with
����� to generate the output ������. This means the filter coeffi-
cient update is always one sample behind the reflection coefficient
update.

3. A SYNCHRONIZED LEARNING ALGORITHM

3.1. Transfer Function Representation

The transfer function of the joint lattice and transversal filter shown
in Fig.1 consists of the reflection coefficients and the filter coeffi-
cients. In this section, an equivalent transfer function in the time

domain is obtained. First, ���� is expressed by

���� ��
�������� (12)
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 (13)

Second, ���� is expressed by

���� � �
�������� (14)

Then elements of matrices ����, ���� can be calculated easily
using the following equations.

������� � ��������� � �
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������� � �������������� ������������ �� (16)

Here,���� has the following structure.

���� �
�
�������������

� ������� � � � ������� � � � �

� �
. . .

... ������� ��
. . .

... �
. . . ���������

. . .
. . .

...
. . .

. . . � ��������� ��
. . .

...
. . .

. . .
. . . �

. . .

� � � � � � � � � � �
. . .

�
�������������

(17)

Using the above expression, the filter output is given by

���� � �
�������������
 (18)

In this expression,���������� represents the equivalent trans-
fer function in the time domain.

3.2. Compensation of Filter Coefficients

From the discussions in [7],[8], ������ is updated using����,
therefore, the following output at the next sample can reduce the
cost function.

	���� �� � �
���� ����������� ��
 (19)

However,���� is updated at the �����-th sample, then the actual
output becomes

���� �� � �
���� ������� ����� � ��
 (20)

��� � �� cannot reduce the error well. In order to overcome this
mismatch, the filter coefficients are compensated so that the trans-
fer function equivalent Eq.(19). That is,

���� �� 	���� �� ��������� ��
 (21)

From this condition, we obtain

	���� �� ��
����� ���������� ��
 (22)

This compensated filter coefficients will be used at the ��� ��th-
sample to generate ��� � �� and ��� � ��. Figure 2 shows the
fact that the equivalent transfer function fluctuated by update of
the reflection coefficients can be restored by the compensated filter
coefficients.
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Fig. 2. A synchronized learning algorithm in error surface.

Table 1. Comparison of The Joint Lattice and Transversal Filter
Multiplier Adder

Synchronized ��� � �� � �� ��� � �� � ��
Con. Lattice �� � �� �� � ��

NLMS �� ��
RLS ��� � �� ��� � ��

3.3. Computational Complexity

Table 1 lists the number of computations of the “Synchronized
Learning Algorithm” and the conventional algorithms. “Conven-
tional Lattice” indicates the joint adaptive filter, which has the
same structure as the proposed method.

4. BLOCK IMPLEMENTATION OF SYNCHRONIZED
LEARNING ALGORITHM

4.1. Reflection Coefficient Update

In the synchronized learning algorithm, the filter coefficients are
modified in synchronizing the reflection coefficient update. Usu-
ally, the reflection coefficients are updated at every sample. How-
ever, if the input signals are stationary or can be handled as sta-
tionary signals during some interval, the reflection coefficients will
be slightly changed. Furthermore, slight deviation from the ideal
reflection coefficients does not affect convergence performance.
This means the reflection coefficients can be fixed during some in-
terval. By fixing them, the modification of the filter coefficients
given by Eq.(22), which requires a main part of computations, is
not required.

Figure 3 shows a time chart of changing the reflection coeffi-
cients at every � samples. After ���� are updated to ������, the
matrix���� is updated to������. Using���� and������
, the filter coefficients ��� � �� are modified by Eq.(22). This
modification is repeated during � samples. Because the signals
passing through ��� � �� are transferred through � � � delay
elements, and effects of ��� � �� on the filter coefficients con-
tinue during � samples. In Fig.3, the hatched blocks occupying
� samples indicates this processing. After � samples, the modi-
fication by Eq.(22) is stopped, no computations for this purpose is
required. Figure 4 shows the part of the matrix� , where effects of
changing the reflection coefficients apper, and related to the modi-
fied filter coefficients 	����. This partial modification can save the
computations into a half of the original at the most.
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Fig. 3. Block update of reflection coefficients.
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Fig. 4. Reflection coefficients update and modification of filter
coefficients.

4.2. Double Lattice Predictor Structure

Even though the reflection coefficients can be fixed in some in-
terval for whitening the input signal of the adaptive filters, they
must be updated at every sample in order to accurately estimated.
Therefore, a double lattice predictor approach is proposed. One of
them is used to estimate the reflection coefficients ����, in which
the reflection coefficients are always updated. The other is used in
the joint adaptive filter to output the backward prediction errors, in
which the reflection coefficients are transferred from the previous
lattice predictor at every � samples, and are fixed.

The double lattice predictor structure is shown in Fig. 5. In the
upper predictor, �� are updated at every sample. They are trans-
ferred to the lower predictor, combined with the transversal filter,
at every � samples. This process is denoted ”copy” in this figure.

����� and 
������ mean the fixed reflection coefficients. ������

and ������ are the forward and backward prediction errors using
the fixed reflection coefficients. ����� is also calculated using the
fixed reflection coefficients. Another operations in the joint lattice
and transversal filter are the same as the structure shown in Fig.1.

4.3. Computational Complexity

Table 2 lists the number of computations of the “Block Implemen-
tation of Synchronized Learning Algorithm”. The computational
complexity is different from the sampling points � in Fig.3, where
the filter coefficients are modified (�� � � � �� �� ) or are
not modified (�� � � � � � � � �� � ��� � �)by chang-
ing the reflection coefficients. “Maximum” is given for the modi-
fied interval and “Minimum” for the other interval. The maximum
number of computations in Table 2 is about a half of that of “Syn-
chronized” in Table 1. In the case of sub-band adaptive filters, the
proposed method is very useful. If a single DSP is shared by all the
sub-bands, then computational requirement can be reduced, that is
about �sub�. �sub is a sub-band adaptive filter length, which can
be well reduced from � .
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Fig. 5. Double lattice predictor structure

Table 2. Comparison of The Block Implementation of The Joint
Lattice and Transversal Filter

Maximum Minimum
Multiplier ��� ���� � �� � ���� � �� � ���� �

Adder ��� � ��
� �� � �� �� � ��

5. SIMULATION AND DISCUSSIONS

Simulation was carried out based on system identification. An un-
known system is the 10th-order IIR lowpass filter. The impulse
response spreads over 50 samples. Therefore, the adaptive filter
length � is set to 50 taps.

The voice signal used in the simulation is shown in Fig.6. A
sampling frequency is 8kHz, then ��� ��� samples mean ��� sec-
onds. Figure 7 shows the learning curves. The proposed method,
“Block Implementation (L=20, S=200)”, can catch up with the
“Synchronized” at ���� iterations. This means the convergence
in early stage is a little slower than the original structure shown
in Fig.1, in which the reflection coefficients are updated at every
sample. However, the “Block Implementation” can save computa-
tional complexity from about ��� to �� compare to the “Syn-
chronized”.

From these simulation results, the proposed method is useful
for nonstationary processes, such as speech signal.

6. CONCLUSIONS

A block implementation method has been proposed for the joint
lattice and transversal filter supervised by the synchronized algo-
rithm. The reflection coefficients are fixed in some interval, where
the modification of the filter coefficients can be saved. Computa-
tional load of the proposed method is about a half of the original
one at the most. The block implementation method can be effec-
tively applied to parallel form adaptive filters, such as sub-band
adaptive filters. The computer simulation has shown the proposed
method is useful for nonstationary signals such as speech signal.
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