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ABSTRACT
A network structure and its learning algorithm have been
proposed for blind source separation applied to nonlinear
mixtures. Nonlinearity is expressed by low-order polyno-
mials, which are acceptable in many practical applications.
A separation block and a linearization block are cascaded.
In the separation block, the cross terms are suppressed, and
the signal sources are separated in each group, which in-
clude its high-order components. The high-order compo-
nents are further suppressed through the linearization block.
A learning algorithm minimizing the mutual information is
applied to the separation block. A new learning algorithm is
proposed for the linearization block. Simulation results, us-
ing 2-channel speech signals, instantaneous mixtures, and
2nd-order post nonlinear functions, show good separation
performance.

1. INTRODUCTION

In practical applications of a blind signal source separation
(BSS), processes of generating, mixing and sensing signals
include nonlinearity, caused by loud speakers, microphones,
amplifiers and so on. Statistical independency is not enough
to separate the signal sources, some additional prior knowl-
edge are required. Furthermore, since a unique solution
is not guaranteed, some regularization techniques are re-
quired [6]. Post-nonlinear (PNL) mixtures, in which the
signal sources are first linearly mixed, and they are trans-
ferred through nonlinear functions. For the PNL mixtures,
a mirror structure BSS, in which a nonlinear process and a
linear unmixing process are cascaded in this order, has been
mainly used [7]. Nonlinear distortion is suppressed in the
first stage assuming some prior conditions. Spline nonlin-
ear functions or spline neural networks have been applied to
the linearization process [3], [4]. Furthermore, a maximum
likelihood estimator has been applied [5]. Also, neural net-
works have been applied [8].

In this paper, the nonlinearity is limited to low-order
polynomial expressions, which are acceptable in many prac-
tical applications. A BSS model is proposed, in which a

separation block and a linearization block are cascaded in
this order. In the first block, signal groups, including high-
order components, are separated. In the second block, the
high-order components are suppressed. Simulation using 2-
channel speech signals and 2nd-order nonlinearity will be
shown to confirm usefulness of the proposed method.

2. NOLINEAR MIXTURES

In this paper, the nonlinearity is expressed by polynomials.
Thus, the observed signals include the high-order terms of
the signal sources and the cross terms among the different
signal sources. Letting si be the signal sources, and nonlin-
earity be a 2nd-order function, the observed signal xj(n) is
expressed as

xk =
n∑

i=1

akisi +
n∑

i=1

n∑
j=1

bk,ijsisj (1)

Thus, xj contains the original si, the high-order terms s2
i ,

and the cross terms sisj , i �= j. Nonlinearity is not lim-
ited to post-nonlinearrity, rather it can be included in the
processes of generating, transmitting, and sensing signals.
Order of nonlinearity is limited to 2nd or 3rd-order. How-
ever, in many practical applications, linear processing is a
main part, and nonlinearity is parasitic phenomena, which
can be approximated by low-order nonlinear functions.

If the signal sources are statistically independent, then
aisi + bis

2
i and ajsj + bjs

2
j , i �= j are also statistically in-

dependent, and can be separated by minimizing the mutual
information [1]. The cross term sisj , i �= j has some corre-
lation with both si and sj , then it can be suppressed through
the above learning process.

3. SEPARATION BLOCK

3.1. Network Structure

A proposed cascade form BSS is shown in Fig.1. The post-
nonlinear (PNL) mixture model is used here [3], [4], [5].
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However, the proposed approach is not limited to the PNL
mixtures. First, the signal sources si are mixed through lin-
ear combination resulting in uj . After that, they are trans-
mitted through nonlinear functions Fk resulting in xk.
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Fig. 1. Network structure of proposed cascade form BSS.

3.2. Number of Sensors

In this model, in order to cancel the cross terms and to sep-
arate the signal source groups, the number of the sensors
is increased. One example is shown below. Two signal
sources are received by four sensors.

x1 = b11s1 + b12s2 + b13s
2
1 + b14s1s2 + b15s

2
2 (2)

x2 = b21s1 + b22s2 + b23s
2
1 + b24s1s2 + b25s

2
2 (3)

x3 = b31s1 + b32s2 + b33s
2
1 + b34s1s2 + b35s

2
2 (4)

x4 = b41s1 + b42s2 + b43s
2
1 + b44s1s2 + b45s

2
2 (5)

xk are treated as a constant. From these linear equations,
the cross term sisj can be cancelled, resuting in

x′
1 = c11s1 + c12s2 + c13s

2
1 + c15s

2
2 (6)

x′
2 = c21s1 + c22s2 + c23s

2
1 + c25s

2
2 (7)

x′
3 = c31s1 + c32s2 + c33s

2
1 + c35s

2
2 (8)

Furthermore, s2
2 is cancelled as,

x′′
1 = d11s1 + d12s2 + d13s

2
1 (9)

x′′
2 = d21s1 + d22s2 + d23s

2
1 (10)

Furthermore, s2 can be cancelled, and the s1 group, which
includes s1 and s2

1, is separated. At the same time, s2
1 is

cancelled as,

x′′′
1 = e11s1 + e12s2 + e15s

2
2 (11)

x′′′
2 = e21s1 + e22s2 + e25s

2
2 (12)

Furthermore, s1 can be cancelled, and the s2 group, which
includes s2 and s2

2, is separated.
These processes are equivalent to multiplying a vector

[x1, x2, x3, x4]T by a 2 × 4 linear matrix W = {wlk}.

3.3. Learning Algorithm

In this block, the signal sources are separated based on their
statistical independency. Therefore, the conventional learn-
ing algorithm, that is likelihood estimation minimizing the
mutual information can be applied [1].

W (n + 1) = W (n) + η[Λ(t) − ϕ(z(n))zT (n)]W (n)
(13)

η is a learning rate, Λ(t) is a diagonal matrix, and ϕ() is a
nonlinear function [2].

4. LINEARIZATION BLOCK

4.1. Linearization Based on Solving Equations

At the outputs of the separation block, it is assumed that the
signal sources are completely separated as follows:

z1 = f11s1 + f12s
2
1 (14)

z2 = f21s2 + f22s22 (15)

Since z1 and z2 include only s1 and s2, respectively, they
can be linearized through the following nonlinear functions.

y1 = G1(z1) =
−f11 ±

√
f2
11 + 4f12z1

2f12
(16)

y2 = G2(z2) =
−f21 ±

√
f2
21 + 4f22z2

2f22
(17)

Finaly, the separated and linearized signal sources are ob-
tained.

y1 = g1s1 (18)

y2 = g2s2 (19)

4.2. Learning Algorithm

Transformations in the linearization block are given by Eqs.(16)
and (17). However, in real applications, the coefficients fij

are not known. So, they should be adjusted through an iter-
ative method. Equations (16) and (17) can be expressed by
using two parameters as follows:

yi(n) = −αi

2
±

√
α2

i

4
+

zi(n)
βi

(20)

αi =
fi1

bi2
, βi =

1
fi2

(21)

αi and βi are adjusted through an iterative method.
Error Function:

In this paper, 2nd-order nonlinearity is assumed. Thus, after
the linear source separation, the outputs include 1st-order
and 2nd-order terms of the signal sources. Furthermore, if
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we take speech and music signals into account, their average
is almost zero. Therefore, the output average can be used as
a cost function.

Ei(n) =
1
M

M−1∑
l=0

yi(n − l) (22)

The gradient descent algorithm is used for adjusting the pa-
rameters.

αi(n) = αi(n − 1) − η
∂Ei(n)
∂αi(n)

(23)

βi(n) = βi(n − 1) − η
∂Ei(n)
∂βi(n)

(24)

∂Ei(n)
∂αi(n)

=
1
M

M−1∑
l=0

∂yi(n − l)
∂αi(n)

=
1
M

M−1∑
l=0

(−1
2
± αi(n)

4
(
α2

i (n)
4

+
1

βi(n)
z(n − l))−

1
2 ) (25)

∂Ei(n)
∂βi(n)

=
1
M

M−1∑
i=0

∂yi(n − l)
∂βi(n)

=
1
M

M−1∑
l=0

(∓z(n − l)
2β2

i

(
αi(n)2

4

+
1

βi(n)
z(n − l))−

1
2 ) (26)

Porality Control:
In the above update equations, there is a freedom of polar-
ity. It should be judged which polarity should be used. For
this purpose, the following conditions are introduced. These
conditions do not lose generality in real applications.

1. A linear component is greater than a nonlinear com-
ponent.

2. The signal source level is limited. Say, for instance
|si(n)| < 1.

Under these conditions, in the linear separation output,

zi(n) = fi1si(n) + fi2s
2
i (27)

the following inequality is always held.

|fi1si(n)| > |fi2s
2
i (n)| (28)

This means the porality of zi(n) is equal to that of fi1si(n).
So, except for the polarity of fi1, that of the output yi(n)
can be controlled so as to be the same as that of zi(n). The
polarity of fi1 does not affect separation performance. Be-
cause in blind source separation, constant scaling inherently
remains.

5. SIMULATIONS AND DISCUSSIONS

5.1. Simulation Conditions

Two signal sources and four observations are used. The sig-
nal sources are male speech signals. The mixing matrix is

A =

⎡
⎢⎢⎣

1 −2
−3 2
2 −1
1 2

⎤
⎥⎥⎦

The learning rate is η = 0.001. The nonlinear functions in
the mixing block are

F1(u1) = u1 + 0.4u2
1

F2(u2) = u2 + 0.2u2
2

F3(u3) = u3 − 0.6u2
3

F4(u4) = u4 + 0.3u2
4

5.2. Separation Block

Separation and linearization performances are evaluated based
on the following SNR. Assuming si is dominant in zj , and
letting σ2

s1 and σ2
n1 be the power of si and s2

i in zj , and the
power of zj except for si and s2

i , furthermore, σ2
s2 and σ2

n2

be the power of si in zj , and the power of zj except for si,
SNR is defined by

SNRi = 10 log10

σ2
si

σ2
ni

(29)

SNR1 includes the high-order components, which are not
suppressed in the separation block. The learning curve is
shown in Fig.2. The vertical axis indicates SNR1 in dB, the
horizontal axis is iteration number. In this figure, the solid
line (2) indicates the learning curve, and the dashed line (1)
shows SNR1 obtained by using the trained wij for refer-
ence. From these curves, the training converges at 17,000
iterations.

5.3. Linearization Block

Error valuation
In this process, separation performance is evaluated by SNR2

defined by Eq.(29). However, the same formula cannot be
used. The si component and the other components are dis-
criminated as follows:

zi(n) is linearized through

yi(n) = −αi

2
+

√
α2

i

4
+

zi(n)
βi

(30)

Let√
α2

i

4
+

zi(n)
βi

=
√

ais2
i (n) + bi(n)si(n) + ci(n) (31)
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Fig. 2. Learning curve for separation block.

Furthermore,√
ais2

i (n) + bisi(n) + ci(n) = disi(n) + ei(n)(32)

ais
2
i (n) + bisi(n) + ci(n)

= d2
i s

2
i (n) + 2disi(n)ei(n) + ei(n)2 (33)

Comparing the coefficients, the following relations are ob-
tained.

d2
i = ai (34)

2diei(n) = bi(n) (35)

e2
i (n) = ci(n) (36)

ai and ci(n) are calculated using αi, βi and zi(n) at each
iteraton. SNR2 is calculated by

SNR2 = 10 log
p(n)
q(n)

(37)

p(n) =
1
M

M−1∑
i=0

(yi(n) +
αi

2
− ei(n))2 (38)

q(n) =
1
M

M−1∑
i=0

(−αi

2
+ ei(n))2 (39)

The learning curve of SNR2, defined by Eq.(37), is shown
in Fig.3 with a dotted line (2). In this figure, SNR2 after
the separation, defined by Eq.(29), and after the linearinza-
tion, defined by Eq.(37), are shown with a solid line (3) and
a dashed line (1), respectively. By linearinzation, SNR2

can be improved by 6 dB. Approximately, SNR2 = 20 dB
is achieved, which is good signal source separation perfor-
mance.

6. CONCLUSIONS

In this paper, a blind source separation method has been
proposed for instantaneous nonlinear mixtures. It consists
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Fig. 3. Learning curve for linearization block.

of the separation block and the linearization block in a cas-
cade form. Both blocks are separately trained. The con-
ventional learning algorithm and the new learning algorithm
have been proposed for both blocks, respectively. Simula-
tion, using two speech signals and 2nd-order nonlinearity,
shows usefulness of the proposed method.
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