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ABSTRACT

A new difference coefficient FIR digital fil-
ter is proposed in this paper. Its coefficient is
obtained as the difference between the successive
values of the original coefficients permuted in
large magnitude sequence. It is effectively appli-
ed to every kinds of filter responses. Computation
complexity becomes about 18 % and 13% for 99th and
299th order FIR filters, compared with a direct FIR
filter realization.

INTRODUCTION

FIR filters are suitable for a linear phase
and a stable response realization. A high order
filter, however, is required to realize a high Q
frequency response. It is necessary to perform a
large number of multiplier operations in a sampl-
ing period. Then decreased or simplified multi-
plier. operations become very important for a high
order FIR filter realization. Several kinds of
approaches to implement multiplier operations with
lower computation rate such as distributed arith-
metics (1), (2), (3) and residue number systems
(4) have been proposed. Difference routing digi-
tal filter proposed by Gerwen et al can reduce
multiplier operations for a narrow band and low
Q filter (5).

In this paper a new difference coefficient
FIR digital filter is proposed. Its coefficient
is obtained as the difference between successive
values of the original coefficients which are per-
muted in large magnitude sequence. The proposed
digital filter is called Permuted Difference Co-
efficient Digital Filter (PDC-DF) in this paper.
It can be effectively applied to every kinds of
filter characteristies. The PDC-DF algorithm,
computation complexity and a hardware realization
are described. ) '

PDC-DF ALGORITHM

The original filter coefficient hp is permut-
ed in sequence of large magnitude at first. New
difference coefficient is obtained as the differ-
ence between the successive values of the reorder-
ed coefficients. This process is repeated, and
higher order difference coefficients can be ob-
tained.

Input and output signal x(n) and y(n) satisfy
the- following convolution equation in FIR filters

N-1
y(n)= I hp x(n-m) (1)
m=0

where n is assumed to be larger than N-1. Let hﬁ
be an absolutg value of hp, and k be the reordered
index, then hy satisfies the follewing conditions

*
hg = |hm| (2a)
and ’
* * x *

0 <hp<hy <hy *s> < hyg. - (2b)
Let x*(n-k) be sign(hp)x(n-m), then y(n) is ex-
pressed using hﬁ and x*(n-k) as follows:

N-1,
y(n) = I hg x*(n-k). : - (3)

k=0 .

First-order permuted difference coefficient Ay(1)
for hik is defined as follows:

Ak (1)

]

% *

‘hg - -hk-1, k=1, 2, =+, N-1 (4a)
* oo

801 = no. (4b)

Using Ak(l), y(n) is rewritten as follows;

N-1 _
y@) = % 4D « oD (nk) )
k=0 )
w@ere
. iiN‘l
u (n-k) = I x*(n-1i). 6)
i=k .

u(1) (n-k) can be calculated through the following
accumulation

uD(n-k) = u(D) (n-k-1) + x*(n-k),
k ='.0:‘ _1’ 'V‘._’ N-2 ’ (73)_

3

u(1) (n-NH1) = x* (n-MH1). (7b)
Number of additions in Eq. (7) is N-1.

Second-order permuted difference coefficient
can be obtained in a similar way as the lst-order

difference ocefficient. Let Ay(1) be 8k(1), and
2 be the reordered index, that is, ’
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AL = (D) (8a)
and
P CH RPN C PN RPN C ) (8b)

The 2nd-order difference coefficient Ag(2) is de-

fined by Eq. (9)

8@ = agM _ a3 P, g =1, 2, -, N-1 (9a)
2@ = a5 (9b)
Using A9(2) y(n) becomes

N-1
y(@) = I Ag(2) « w(D(n-9)
2=0

u(2) (n-2) .is expressed by the reordered u(l) (n-k)
represented as u*(1l) (n-2) which corresponds to

5 .
Ag(D),

N-1
u? (n-2) = 1 w*(D(n-1).
i=g

Equation (11) can be performed through N-1 times
additions

u(?) (n-2) = u(? (n-2-1) + ux(D (n-9),
£=0, 1, -+, N-2

(¢8))

(12a)

u(2) (n=-N+1) = ux(1) (a-N+1). (12b)

Higher order difference coefficient can be obtained
in the same way.

COMPUTATION COMPLEXITY

) Additions are required for u(1l)(n-k) and

u(2) (n-2) calculations given by Eqs. (7) and (12),
and mutiplications are required for the Ag(2) and
u(2) (n-2) product calculation. Let Ni and N2 be
the number of nonzero Ak(1) and AP’ rounded off,
and Lppc be the Ag(2) word lengths reduced by logp
(maxlhn?/max(Ag(2§)) bit from LO. The computation
rate for the PDC-DF is defined as follows:

Ippc = N + N + Lppc * Na. (13)
Ippc corresponds to number of equivalent additionms.
The direct FIR structure is evaluated in the same
way. Its computation complexity IFIR becomes

IFIR = (Lo + 1)N. (14)

Lo which is the hp word length, is determined so as
to realize the desired filter response. Relation
between the factors, Nj, Ny and Lppc determining
computation complexity and filter response can be
found based on the ideal filter response. The
maxlhnl, the mean and the variance for hap (Ef{hpl
and Var[hp]) can be expressed using band-width B
and number of coefficients N as follows:

mgxlhn] = 2B (15a)
1
E[hp] =-§-Low pass filter
= 0 Band pass filter (15b)
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N

Standard variance for hp is War[hn] = vZB/N. The
distribution function property can be evaluated by
the ratio of the standard variance and the maximum
value, which is 1/v2BN.

Var [hp] (15c)

Narrow band filters

‘sponses are shown in Fig. 1.

Since the ratio 1/v2BN is large, the probabi-
lity desnity for large magnitude coefficients is
high. The 28X (Ak(1)) is mainly determined as the
difference among large magnitude coefficients.
Thus it is greatly reduced from the ®3X|hy|. On
the other hand, N] is not so small compared with
N because of high probability density for large
magnitude coefficients. The same properties are

roughly held for the max(Ag(2)) and N2.

Wide band filters

The ratio 1//2BN is small, then the probabil-
ity density for small magnitude coefficients is
high. The max(Ag(2)) cannot be well decreased be-
cause of low probability density for large magni-
tude coefficients. On the other hand N and Np
are well decreased from high probability density
for small magnitude coefficients. The computation
complexity is determined by two kinds of factors,
max(Ag(2)) and the number of nonzero coeffici-
ents, then the above two kinds of filter responses
have almost the same computation complexity.

Filter Order

Another factor determining the coefficient
distribution function is a filter order N-1. Since
the ratio 1/V2BN becomes small in high order FIR
filters, N1 and Ny can be decreased. On the other
hand, the max(Az(z)) is not so increased compared
with low order filters. The reason can be explain-
ed as follows: Under the same probability density,
high order filters can give smaller magnitude dif-
ference coefficients, compared with low degree fil-
ters. Then, high order filters provide almost the
same value for max(AR(2)) as low order filters, in
spite of the lower probability density for large
magnitude coefficients. As a result, the computa-
tion complexity for high order FIR filters can be
reduced compared with that for low order filters.

NUMERICAL EXAMPLE

Numerical examples showing the coefficient
distribution nature and the computation complexity
for several kinds of filter responses are discribed
here. The FIR filters used in the following dis-
cussions are as follows: The 99th and 299th order
low pass filters (LPF) and band pass filters (BPF)
designed through the Remetz exchange method (6).

Examples for thier frequency and the time re-
The bandwith B is
determined by the 6dB loss point shown with fc in
the figure.



Coefficient Distribution Function

Figure 2 shows provability demnsities for |hn|,
Ak(1) and Ag(2). One division indicates 10 % and
1 bit on the vertical and the horizontal axes, res-
pectively. All coefficients are normalized by the
maX|hy| and illustrated by its word lengths. The
probability density for (i-1, i] bit on the hori-
zontal axis corresponds to the number of the coef-
ficients whose absolute value is included in the
following region: (2-LO+i-1  2-LO+i), 19 is taken
as 10 bits for the 99th filter and 12 bits for the
299th filter. From these figures, the previously
obtained distribution function natures can be con-
firmed.

Computation Complexity

The max(Ag(2)), Ny and Ny are shown in Fig. 3.
Ni and N2 are normalized by N. Since, the max(Ag(2))
is not normalized, there is about a 2 bit differ-
ence between the 99th and the 299th filters. This
means that word length reductions for max(Ag(2)) in
soth the 99th and the 299th filters are almost the
same. From this fact, the previosuly obtained con-
jecture, that is, the max(Ag(2)) is independent on
filter degree, can be recognized. The discussed
relation between the complexity factors, and the
bandwidth B and filter order N-1 is also confirmed
by these results. The computation complexity eval-
uated by Eq. (13) is illustrated in Fig. 4, where
Ippc is normalized by IFIR. They are around 18 %
and 13 % for the 99th and 299th filters, respec-
tively, compared with the direct method. As pre-
visouly discussed the high order filters can give
small computation rate. The independency between
Ippc and bandwidth is also recognized from this
figure.

HARDWARE REALIZATION

Through the previous numberical examples, the
2nd-order PDC-DF can be found to be useful from the
computation complexity point of Vview. Therefore a

“hardware realization is described for the 2nd-order
PDC-DF here. For the sake of clarifying the PDC-DF
algorithm, 9th order filter is used in the follow-

ag. The original coefficient, the lst and the 2nd
order difference coefficient are shown in Table 1.
A hardware realization is illustrated in Fig. 5.
In this example, the original coefficient (LQ) and
2nd-order difference coefficient (LppC) word lengths
are 9 bits and 1 bits, respectively. The number of
nonzero difference coefficient Nj and N are 6 and
2, respectively. The data mapping block DM can be
easily realized using a random access memory (RAM)
together with a read only memory (ROM) where ad-
dress signal is stored.

CONCLUSION

A new difference coefficient digital filter is
proposed. It can be effectively applied to every
kind of filter'responses. Computation complexities
are around 18 %Z and 13 %Z for 99th and 299th FIR
filters, respectively, compared with a direct FIR
filter realization.
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