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ABSTRACT A band-limited signal extrapolation algorithm
is proposed. First, Cadzow’s algorithm is modified to
eliminate undesired outband spectra. Next, an inverse
filter stopband response is relaxed by adding small
random numbers. A constrained heuristic optimization is
suggested, which can employ arbitrary signal properties
as constraints. Through numerical examples, these regula-
rization techniques can improve SNR by 20 dB.

I. INTROBUCT ION

The extrapolation of a band-limited signal in terms of
a finite segment is one' of the most important problems in
signal processing. Various algorithms have been proposed
for this problem.

They can be clasified into the following categories.
First is the analytical continuation technique, and the
series expansion technique in terms of prolate spheroidal
functions [1]. The second category is an iterative algo-
rithm, based on successive reduction of the mean-square
error [2]-[5]. In the author’s experience, this algorithm
works well only when the frequency reponse for a finite
segment is similar to the original.

The third algorithm is a one-step procedure [61,[7].
In Cadzow’s algorithm [7], the original signal is formu-
lated as a convolution sum of an unknown signal and a
band-limiting filter. Since they are sampled by a much
higher frequency than the original signal bandwidth, un-
desired outband spectra can be generated, which easily
disperses an extrapolation process.

The band-1limited signal extrapolation is basically an
ill-posed problem. In actuality, xrt(n) contains noise,
and errors associated with algorithm implementation can
exist. In order to regularize an extrapolation process,
additional knowledge about x(n) beyond its band-|imited
character should be taken into account. Energy const-
raints for the band-limited signal or for the noise have
been used for this purpose [8]-[11].

This paper also deals with regularization techniques
for ill-posed inverse filtering . First, Cadzow’s algo-
rithm is modified to eliminate undesired outband spectra.
Second, in order to suppress noise amplification, an
inverse filter stopband response is relaxed. Third, a

constrained heuristic optimization is suggested. Finally,
numerical examples are demonstrated.

1. MODIFIED CADZOW’S ALGORITHM
Cadzow’s Algorithm
The original signal x(n) is assumed to be
x(n)=g(n)%u(n), nEA (4]
u{n) is an appropriate input signal. g(n) is an impulse
response ‘of a band-limiting filter. Symbol % means a
convolution sum. A is a set of sampling points located
in the entire time interval from n=0, to N-1.

Based on the above assumption, an extrapolation proce-

dure is formulated as

xp1(n)=h(n)4u"(n), n€EArr @

x“(m=h(n)$u"(n), nEA (€))]
xp1(n) is a finite segment, that is a fractionally
observed data. Ar1 is a set of sampling points in the
observation intervals. h(n) is an impulse response of a
band-limiting filter, used in an extrapolation process.
u"(n) and x"(n) are estimated versions of u(n) and x(n),
respectively.

In order to obtain u™(n) by solving Eq.(2), the number
of xe7(n) should be equal to or larger than that of u™(n)
For this purpose, xe7(n) is oversampled in a narrow time
interval. In Cadzow’s method, u"(n) is also sampled by
the high frequency. As a result, u"(n) contains undesired
outband spectra, which easily cause unbounded error.
Modified Algorithm

The original signal x(n) is assumed to be band!imited
within fc. Since xe7(n) should be oversampled in a narrow
interval, x(n) is expressed with a much higher sampling
freguency than 2fc. Let fs be the sampling frequency,
satisfying fs) fc. The frequency response for x(n) in
0=f=fc does not change by sampling x(n) with 2fc. Let
xo(nL) be the decimated version of x(n) by 2fc/fs, as
follows:

xo (nL)=x(nL) (4a)
xo (m)=0, m#nL (4b)
L=fs/2fc (4c)

Althogh xo(nL) is sampled with 2fc, it is represented as
xo{n) for convenience. This means L-1 samples among L
samples are zero.
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The original signal x(n) can be reconstructed by
eliminating the outband spectra for xo(n).
x(n)=h(n)¥xo(n) )
A cutoff frequency for h(n) is set o be fc. This process
is illustrated in Fig.l. Since x(n) is a finite sequence,
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Fig.1 x(n) is obtained by passing xo(nL) through
band-1imiting filter.

the band-1imitation by H(2) is not complete. Therefore,
Eq.(5) is approximately held.
Let xo"(n) be the approximated version of xo(n). It is
obtained from
xp1{n)=h(n)¥xp"(n), nEArT (6
The entire extrapolated signal x"(n) is obtained by
interpolating xo"(n), as follows:
x~(n)=h(n)%xo"(n), nEA D
The advantage of the proposed approach over Cadzow’s
method is elimination of the undesired outband spectra.
Number of xp (n) Samples
Letting M be the number of xo"(n) samples, it is
determined from

M=N(2fc/fs) 3)
If M is given by
M=mN(2fc/fs), l<m : integer €)]

its sampling frequency becomes 2mfc. This causes the
undesired spectra in the outband fc=f=mfc, which
disperses an extrapolation process.

On the other hand, when M is smaller than Eq.(8), the
sampling frequency is less than 2fc. Therefore, xo (n)
cannot represent the entire frequency response. However,
by assuming that xo"(n) is equally spaced. in a partial
range of A, the sampling frequency can be set to 2fc,
Number of xet(n) Samples

Letting K be the number of xp7(n), it should satisfy

K2M, (10)
in order to obtain xo"(n) from Eq.(B). When K=M, Eg.(6)
becomes a set of linear equations for xo"(n). On the
other hand, when K is larger than M, xo"(n) is obtained
as the least mean square solution from Eq.(6). In both
ways, estimating xo"(n) is carried out by solving linear
equations.

I11. PSEUBO INVERSE FILTERING
Noise Amplification
Equation (B) is expressed using vectors and a matrix,

as follows:

Hxp =xp1 an
H is an MxM matrix, which consists of h(n). xo~ and xev
are vectors for xo"(n) and xe7(n), respectively. From the
above equation, xo~ is calculated by

xo =H 'xp7 a2

Next, noise gep7(n) in xp1(n) is taken into account.

Equation (11) is rewritten as

Hxo =xpr+eept (13)
X0~ is now expressed by
x0 =H 'xpr+H ' gpt (19

The second term in the right hand side is noise after
signal extrapolation. Thus, the noise is amplified by
H-'. Althogh H™! is determined by Aet, it can be
regarded as inverse filtering. Therefore, noise spectra
in the stopband are greatly amplified.
Adding Small Random Numbers

In order to suppress this noise amplification, the
stopband amplitude response is relaxed by adding small
random numbers to h(n).

h* (n)=h(n)+ A r(n) (15)

r{n) represents random numbers distributed in the range
(-0.5,0.5), and A is a scaling factor. From Eq.(15),
Eq.(6) is rewritten as

xp 7(n)=Ch(n)+ A r(n))%xo"(n) (18)
Furthermore, qu(13) becomes
(H+AR)xo =xp1+ £p1 an

R is an MxM matrix, which consists of Ar(n). From this
equation, xo~ is obtained as
xp =(H+A R) '(xp7+gpT)
=(H+AR) 'ser+#(H+AR) 'gp1 (18)
After xo~ is obtained, the entire signal x"(n) is inter-
polated through Eq.(7), which does not include the random
numbers.
Letting H*(2) be the z transform of h*(n), they are
related by Parseval’s relation.

L e i?ae - N%lh'z M a9
21 -m n=
Nn is the number of h(n) samples. Since h(n) and r(n) are
independent from each other, the h*(n) energy is divided
into
th-fln'a(n)= NEAa(n) + AZN"Zfl@(n) (20)
n=0 n=0 n=0
Letting H(2) and R(z) be the z transforms of h(n) and
r(n), respectively, £q.(20) is translated into a fre-
quency domain, as follows:

L k(e 1 2ge =
2n -n
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Since IR(ei“) | can be assumed to be flat in the entire
frequency band, the second term in the right hand side
becomes

A2 IR(eiv) I 2= sz%lre(n) (22)
n=

When r(n) has zero mean value, and is uniformly distri-
buted in (-0.5,0.5), its spectrum can be evaluated by

A2 | R(ei%) 1 2=NnA2/12 23)
Since the stopband amplitude response of H*(2) is mostly
determined by AR(z), inverse matrix stability can be
controiled by A. The passband response is almost the
same as that for H(z), because A is usually a very small
number.

On the other hand, xo"(n) cannot be completely band-
limited, due to A R included in the first term in the
right hand side of Eq.(17). This degrades an extrapolated
signal. Thus, the optimum trade-off for A should be
determined, taking both effects into account.

1V. HEURISTIC OPTIMIZATION METHOD

A constrained heuristic optimization procedure is sug-
gested as another regularization technique. |t makes it
possible to use arbitrary signal properties as
constraints.

Let xp7°(n) be the observed data, including €r1(n).

xp1 (n)=xet(n)+er1(n) 1)
If we assume | erp1(n) | <&, the exact xr1(n) is
expected within xet" (N6 .

In order to minimize the distance between xpt(n) and
xp1°(n), a supplementary sequence A(n) is added to
xp1n), The optimum A(n) is searched for through a
heuristic procedure, based on some error criterion.

Letting T" [x(n)] represent observable property for
x(n), an error criterion is, for example, defined by

E= 1T [x(mM] -T [x(M] 1 /T [x(n)] (25)
Equation (11) is rewritten, taking A(n) into account.

Hxo =xp1°+A (26)
After xo~ is obtained from the above equation, x"(n) is
calculated from Eq.(7).

First, in the following region,

-8=sA(N)SS @n
Q sets of random numbers are assigned to A(n). From
Eqs.(26), (7) and (25), E is calculated for each A(n)
set. Among them, the optimum A(n) set is selected, which
minimizes E. Letting A’ be the optimum set on the
first stage, a more optimum set is further searched for
around A‘!’ on the second stage. The search region is
narrowed, stage by stage. By repeating this process on
the several stages, quasi-optimum A(n) is obtained.

Since e€rp1(n) is regarded as a random sequence, and
the noise power is roughly estimated, the proposed
heuristic procedure can find a quasi-optimum solution in
a short computing time.

Y. NUMERICAL EXAMPLES
The original signal x(n) is given by
x(n)=g(n)$v(n) (28)
A cutoff frequency for g(n) is fc=fs/16. v(n) is a multi-
frequency signal given by
v(n)=sin(we)+sin(Qwe)+sin(3we) (29a)
we=27m/64 (29b)
The number of x(n) samples is N=128, and g(n) and v(n)
samples numbers are both N/2=64. xp (n) is assumed to be
sampled by 2fc in 0=n=N/2-1. The number of xo " (n) is
(N/2)(2fc/fs)=64. Seven samples among every eight samples
are set to be zero. A signal-to-noise ratio is defined by
SNR=101og {EL(x(n)-x"(n))2)/E[x2(n)]} [dB] (30)
ELx(n)] is a mean value for x(n).

x(n), xet(n) and their amplitude responses are shown
in Figs.2(a) and 2(b), respectively. Art is from n=61 to
68. x(n) is normalized so that the maximum value is unity
and quantized with 20 bit wordlengths. Extrapolated
results are shown in Fig.2(c). Second, the normalized
x(n) is quantized with 12 bit wordlengths. As Fig.2(d)
shows, the extrapolated results significantly deviate
from the original. Since all graphs are normalized, so
that their maximum values have the same value, x (n) in
Ar1 is slightly different from x(n).

Next, small random numbers (A=0.005) are added to
h(n). As Fig.2(e) shows, the results are more like the
original. SNR is increased by 11.7 dB. Furthermore, the
heuristic optimization was carried out, using energy and
variance for x(n) as constraints. The variance is defined
by

gfl
Var[x(n)] = 20 I N/2-n | x2(n) an
Fifty sets of random numbers are assigned to A(n) on one
stage. The searching process is repeated on three stages,
narrowing the search region by 1/4. The results are shown
in Fig.2(f). SNR is further improved by 10 dB from the
psuedo inverse filtering.

VI. CONCLUSION

A band-limited signal extrapolation algorithm has been
proposed. First, Cadzow’s algorithm has been modified to
eliminate outband spectra. Next, two kinds of regulariza-
tion techniques have been proposed. They are inverse
filter relaxation and constrained heuristic optimization.
Through numerical examples, these regularization
techniques improved SNR by 20 dB.
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Fig.2 Numerical examples for proposed signal extrapolation
algorith. (a) x(n) and its amplitude response. (b) xp1(n)
and its amplitude response. Extrapolated signals and their
amplitude responses are shown in (c)~(f). (c) xe1(n) is
quantized with 20 bit wordlengths. (d) xe1(n) is quantized
with 12 bit wordlengths. (e) Pseudo inverse filtering, A=
0.005. (f) Constrained heuristic optimization.
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