
A NUMERICALLY STABLE FAST NEWTON TYPE ADAPTIVE FILTER
BASED ON ORDER UPDATE FAST LEAST SQUARES ALGORITHM

Youhua WANG Kazushi IIIEDA Kenji NAKA YAMA

Department of Electrical and Computer Engineering
Kanazawa University, Kanazawa 920, Japan

ABSTRACT

The numerical property of an adaptive filter algorithm
is the most important problem in practical applica-
tions. Most fast adaptive filter algorithms have the nu-
merical instability problem and the fast Newton transver-

sal filter (FNTF) algorithms are no exception. In this
paper, we propose a numerically stable fast Newton
type adaptive filter algorithm. Two problems are dealt
with in the paper. First, we derive the proposed algo-
rithm from the order-update fast least squares (FLS)
algorithm. This derivation is direct and simple to un-

derstand. Second, we give the stability analysis using
a linear time-variant state-space method. The transi-
tion matrix of the proposed algorithm is given. The
eigenvalues of the ensemble average of the transition
matrix are shown to be asymptotically all less than
unity. This results in a much improved numerical per-
formance compared with the FNTF algorithms. The
computer simulations implemented by using a finite-
precision arithmetic have confirmed the validity of our
analysis.

1. INTRODUCTION

The FNTF algorithms attract many attentions these

years. The main advantage of the FNTF algorithms

is the fast computation of the gain vector needed for
the adaptation of the transversal filters [l]. Like any

other fast version of the RLS algorithms, the FNTF
algorithms also suffer from the numerical instability
problem, if the predictor used for extending the gain
vector is calculated by using the FLS algorithms.

The instability of the FLS algorithms is mainly pro-
duced by a hyperbolic rotation (causing the eigenvalues
to go out of the unit circle) that has to be operated on
the backward predictor in order to obtain the recur-

sive equations for computing the gain vector [2]. In

the FLS algorithms, however, if we assume that the re-

cursions involve both order- and time-update, then the

least squares solution can be obtained by using either

forward or backward predictor. Therefore, the stable

structures of both forward and backward predictors are

remained. This leads to the algorithms we called the
predictor based least squares (PLS) algorithms. The
PLS algorithms demonstrate a very stable and robust
numerical performance compared with the RLS and the
FLS algorithms. Some,comparative studies are pre-

sented in [3].
Unfortunately, the computational load of the PLS

algorithms is O(N2). This makes it difficult to be im-
plemented in real time applications even using today’s
DSP technology. In order to overcome this difficulty,

a fast PLS algorithm is proposed in this paper. The
assumption for the proposed algorithm is the same as
that of the FNTF, that is, if the input signal can be
sufficiently modeled by an autoregressive of order M,
where M is possible to be selected much smaller than
the order N of the adaptive filter, then the gain vector
can be extended from M to N based on the predic-
tor and the gain vector of order M without sacrificing
the performance. However, the derivation presented in
this paper is different from that of Ref.[l]. Instead of
using the Max-Min and Min-Max principle, the deriva-
tion shown here is direct and much easy to understand.
The most important characteristic of the fast PLS algo-
rithm is its good numerical performance. In the paper,
we adopt a linear time-variant state-space method for
its stability analysis. The transition matrix of the pro-

posed algorithm is derived and its ensemble average is
evaluated. The eigenvalues are shown to be asymp-
totically all less than unity. Computer simulations are

carried out to confirm our analysis.

2. DERIVATION OF FAST PLS
ALGORITHM

The derivation is based on the backward PLS (BPLS)

algorithm that can be written as

&(n) = c’,(n - l)um(n) + u(n - 7-n) (1)

B,(n) = X&(n - 1) + r,(n)&(n) (2)
XB,(n - 1)

Ym+l(n) = B*(n) YmCn> (3)

c,(n) = c,(n - 1) - r,(n)&(n)L(n) (4)

i&+1(n) = [‘mtn)]

where I& is the backward a priori prediction error,

B,,,(n) is the minimum power of $m(n), cm(n) is the
tap-weight vector of the backward predictor, y,,,(n) is

the conversion factor, k,,.,(n) is the normalized gain vec-
tor, u,(n) is the input vector and X is the forgetting
factor.

The use of the normalized gain vector Em(n) instead
of the gain vector k,,,(n) will be explained latter.

Assume that the input signal can be modeled by an
.4R(M), implying that the use of the predictor of order
M is sufficient. The problem is how to extend the gain

vector from EM(~) to kN(n) based on the knowledge of
the M-th order backward predictor with least increase
of computation. For m > M, the optimum choice of
this predictor results

[

&n-M

. CM(n-m+M-1) 1 (6)
1

To prove (6), we first compute the BPLS algorithm
to get kM+i(n) and the predictor of order M. Then,
we write (5) for m = M + 1 as

GM+&-‘) kM+dn) = o [1 tihf+l (n)
+XB

cM+l(n - 1)

M+l(n - 1) 1 1 (7)
From the assumption, the first term of cM+l(n - 1) is

zero, that is

We want to determine the tap-weight vector of the

backward predictor cM+l(n - 1) so that the predic-
tion error $.w+i(n) and its error power B,w+l(n) can
be minimized. Since

lirM+l(n) = c’,,,(n - l)uMtl(n) + ~(n - M - 1)

= C’,(n - l)u.w(n - 1) + u(n - M - 1) (9)

the optimum predictor, which uses u(n - I), . . . , u(n -
M) to predict u(n - M - l), is ~~~(72 - 2) that satisfies

$,bf(n - 1) = c’,(n - 2)u,v(n - 1) + u(n - M - 1)

(10)

where $M (n - 1) is the minimum prediction error (least
squares solution), that is

tiM(n - 1) = min[+M+l(n)]

Under the constraint of using $M(n - l), from (2),

the minimum prediction error power we can get is

BM(n - 1) = XB,w(n - 2) + yM(n - l)+&(n - 1) (11)

which means

B,u(n- 1) = min[Bw+l(n)]

Therefore, we have

*,utl (n) %+1(~ - 1)

XBMtl (n - 1) 1 1 1cIM(n - 1) 0

= XB,u(n - 2) [cM(n - 2) 1 (12)
1

Following the same procedure, we can prove (6).
Notice that no additional computation is needed for
obtaining (6) except some delays when m > M. This is
the key point that makes the computation reduction of
the BPLS algorithm possible. So the update equation
for iN(n) can be written as

knr(n) = [- 1 k.44 (n>
ON-M

+

N-M-1
0;

c
$M(n - i)

ABM(n - i - 1) [1 CM (n ; i - l) (13)

i=.
ON-M-i-l

The extension of the conversion factor Y,,, (n), how-
ever, does not satisfy this relation, that is

rm(n> # -m(n - m + M) (14)

This is because y,,,(n) involves only an order-update

recursion as shown in (3). There is no relation of rm(n)
among the time-update recursions. This fact gives the
reason why the fast BPLS algorithm should be derived

based on the normalized gain vector c,(n). If the gain
vector km(n) is used, then we can write

Since (15) includes r,,,(n), the result of (13) can not be

obtained. We note that this problem was not clarified

in Ref.[l].

The extension of the conversion factor can be ob-

tained from its definition [5]

rm(n) = 1 - uz(n)km(n) =
1

1 + ug(n)i;,(n)
(16)

Multiplying both side of (13) by u;(n) and using (1) it is shown in [4] that numerical stability of (18) is

and (16)) we get determined by the eigenvalues of ,,lic E[A(n)].

As long as kN(n) and yn;(n) are available_, the gain
vector can be computed by k.v(n) = yN(n)kN(n).

Equations (13) and (17) can be further simplified

[l], which result in the same form as the Version 3 of

the FNTF algorithms.

The computational load of the fast BPLS algorithm
is about $M’ + 5n/l + 2N, which is comparable to

5M + 2N required by the combination of the FTF and
the FKTF algorithms when M is small. This is usually

satisfied in some applications like acoustic echo can-
teller, in which a speech signal is used as the input.

3. STABILITY ANALYSIS

The most important characteristic of the fast BPLS
algorithm is its good numerical performance. In this
section, we will prove this property.

The prediction part of the BPLS algorithm can be
modeled by the following nonlinear state-space form [4]

@(n) = f [@(n - l),um(n>l (18)

where o(n) and u,(n) denote the state-space variables
and the tap-input vector, respectively. For a finite pre-

cision implementation, roundoff errors are introduced,
so that 6(n) = o(n) + A@(n). Assuming that the er-
rors are small, (18) can be linearized in the presence of
the roundoff errors, which leads to

A@(n) = A(n)AO(n - 1) + V(n) (19)

where V(n) represents the instantaneous contribution
of the roundoff noise, and

A(n) = 00 f [@Jum(n)llo=o~n-l~. (20)

This is a linear time-variant system with a signal-dependent
A(n) matrix. Therefore, an exact statement about the
deterministic stability is difficult to make. Neverthe-
less, we can make certain statistical statements when
the input signal u(n) is stationary and ergodic. More

precisely, it is shown in [4] that the state transition
matrix

In particular, the state-space variables that involve

the time-update recursions in the BPLS algorithm can
be expressed by

(22)

Substituting (1) to (4) and noticing that k,(n) =
T,,, (n)k, (n), we can write the first state-space variable

as

c,(n) = (1, - L(n)u~(n))c,(n - 1)

+u(n - m)k,(n) (23)

where I, is an m x m identity matrix. For the second

state-space variable, substituting (1) to (2), we have

B,,,(n) = XB,(n - 1)

+rm(n)cZ(n - l)um<n)u’,(n)cm(n - 1)

+2u(n - m)uL(n)c,(n - 1) + u2(n - m)(24)

It is worth noting that the gain vector k,,,(n) and the
conversion factor y*(n) are not state-space variables
because they involve only the order-update recursions.

From (20), the transition matrix A(n) is obtained
by differentiating the state-space model (18) with re-
spect to its state-space variables, which results in

A(n) =
1, - k,(n)uz(n) 0

2y,(n)$h(n)uz(n) X (25)

(26)

Since 0 < X < 1 and A(n) is a block-lower-triangular,

it remains to show that the eigenvalues of

J%--km(n)uT,()I n are asymptotically all smaller than

unity in magnitude.
For 1 - X << 1, from [5], we can derive

J&@,,,(n) x (1 - X)-‘R

where Q,,,(n) = 2 X”-‘-‘u,(+r~(~) and
i=l

R = E[u,(n)uz(n)].
Since km(n) = @;‘(n)um(n), it follows that

Jiz E[k,(n)uz(n)] z (1 - X)1, (2’i)

F(n,O) = A(n)A(n - l)...A(l) (21)

has an asymptotic constant eigendecomposition that

can be used to decide about the numerical stability of

the original system. Using the averaging technique,

Consequently,

,ji~z E[I, - k,(n)uz(n)] z XI,, (28)

which confirms that all the eigenvalues of E[A(n)] con-

verge approximately to X as n - oc.

The numerical property of the fast BPLS algorithm
is closely related to the BPLS algorithm. It is not diffi-
cult to see that if the backward predictor and the gain

vector of order M is stable, then the extended gain
vector of order N computed by (13) and (17) is also
stable.

4. SIMULATION RESULTS

To confirm the validity of our analysis and demonstrate

the improved numerical performance, computer simula-
tions are carried out. -4n adaptive system identification

problem is employed for the simulation. A floating-
point arithmetic that consists of an 8-bit exponent and

a variable mantissa is used for implementations.
Figure 1 shows the residual error of the fast BPLS

algorithm computed by using a variety of word-length
mantissa bits and compared with the FNTF algorithms.
As expected, the numerical performance of the fast

BPLS algorithm is very robust to round-off errors pro-
duced by finite-precision implementations. On the other
hand, the FNTF combined with the fast transversal fil-
ter (FTF) algorithm is unstable even under the double-
precision implementation.

5. CONCLUSION

.4 numerically stable fast Newton type adaptive filter
algorithm has been proposed. The derivation is based
on the order-update FLS algorithm. The result is con-
sistent with the FNTF algorithms, but the derivation is
direct and simple to understand. The numerical prop-
erty of the proposed algorithm has been analyzed by
using the linear time-variant state-space method. The
transition matrix of the BPLS algorithm is derived and
the eigenvalues of the ensemble average of the transi-

tion matrix are are shown to be asymptotically all equal
to X. This results in a numerically stable and robust
performance of the BPLS algorithm. The fast BPLS

algorithm, which extend the gain vector using the pa-
rameters computed by the BPLS algorithm, behaves a

much improved numerical performance compared with
the FNTF algorithms. Therefore, the fast BPLS algo-
rithm can be applied to various fields, such as acoustic
echo canceller, to provide a fast convergence rate and
stable performance with less computation.

References
PI

PI

G.V. Moustalcides and S. Therodoridis,“Fast Newton
transversal filters - a new class of adaptive estimation
algorithms,” IEEE Trans. Signal Processing, vo1.39,
no.10, pp.2184-2193, 1991.

J.M. Cioffi,“Limited-precision effects in adaptive fil-
tering,” IEEE Trans. Circuits and Systems, CAS-34,
pp.821-833, 1987.

[31

141

151

Y. Wang and K. Nakayama,“Numerical performances
of recursive least squares and predictor based least
squares: a comparative study,” IEICE Trans. Funda-
mentals, vol.EBO-A, no.4, pp.T45-552, 199i.

D.T.M. Slack and T.Kailath,“Xumerically stable fast
transversal filters for recursive least squares adaptive
filtering,” IEEE Trans. Signal Processing, vo1.39, no.1,
pp.92-114, 1991.

S. Haykin, Adaptive Filter Theory, Second Edition,

Prentice Hail. 1991.

(a] RLS (N-M&3.OOuble pCisiOn)

i;[::

1400 1600 1600 2000
s.amples

(b) Fad SPLS (N.SO.M.lO.EM manlii)
1,

-3 I

“0 200 400 600 800 1000 1200 1400 1600 1600 2000
SmpleS

(c) Fas! BPLS (N-SOAd-lO.Gbit mantissa)

-3 .

200 400 600 600 1000 1200 1400 1600 1600 2000
Samples

(d) FNTF+lTF (N-6O.M.lO.Double pecision)

Sampres

Figure 1: Simulation conditions: Speech signal input,
X = 0.98, 6 = 1, unknown system N = 50 and has

a sudden change at 500 samples. (a) RLS algorithm,

N = M = 50, double precision, (b) Fast BPLS al-

gorithm, N = 50: M = 10, 8-bit mantissa, (c) Fast

BPLS algorithm, N = 50, M = 10, g-bit mantissa,

(d) FNTF+FTF algorithm, 1%’ = 50, M = 10: double
precision.

