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ABSTRACT 

The numerical property of an adaptive filter algorithm 
is the most important problem in practical applica- 
tions. Most fast adaptive filter algorithms have the nu- 
merical instability problem and the fast Newton transver- 

sal filter (FNTF) algorithms are no exception. In this 
paper, we propose a numerically stable fast Newton 
type adaptive filter algorithm. Two problems are dealt 
with in the paper. First, we derive the proposed algo- 
rithm from the order-update fast least squares (FLS) 
algorithm. This derivation is direct and simple to un- 

derstand. Second, we give the stability analysis using 
a linear time-variant state-space method. The transi- 
tion matrix of the proposed algorithm is given. The 
eigenvalues of the ensemble average of the transition 
matrix are shown to be asymptotically all less than 
unity. This results in a much improved numerical per- 
formance compared with the FNTF algorithms. The 
computer simulations implemented by using a finite- 
precision arithmetic have confirmed the validity of our 
analysis. 

1. INTRODUCTION 

The FNTF algorithms attract many attentions these 

years. The main advantage of the FNTF algorithms 

is the fast computation of the gain vector needed for 
the adaptation of the transversal filters [l]. Like any 

other fast version of the RLS algorithms, the FNTF 
algorithms also suffer from the numerical instability 
problem, if the predictor used for extending the gain 
vector is calculated by using the FLS algorithms. 

The instability of the FLS algorithms is mainly pro- 
duced by a hyperbolic rotation (causing the eigenvalues 
to go out of the unit circle) that has to be operated on 
the backward predictor in order to obtain the recur- 

sive equations for computing the gain vector [2]. In 

the FLS algorithms, however, if we assume that the re- 

cursions involve both order- and time-update, then the 

least squares solution can be obtained by using either 

forward or backward predictor. Therefore, the stable 

structures of both forward and backward predictors are 

remained. This leads to the algorithms we called the 
predictor based least squares (PLS) algorithms. The 
PLS algorithms demonstrate a very stable and robust 
numerical performance compared with the RLS and the 
FLS algorithms. Some,comparative studies are pre- 

sented in [3]. 
Unfortunately, the computational load of the PLS 

algorithms is O(N2). This makes it difficult to be im- 
plemented in real time applications even using today’s 
DSP technology. In order to overcome this difficulty, 

a fast PLS algorithm is proposed in this paper. The 
assumption for the proposed algorithm is the same as 
that of the FNTF, that is, if the input signal can be 
sufficiently modeled by an autoregressive of order M, 
where M is possible to be selected much smaller than 
the order N of the adaptive filter, then the gain vector 
can be extended from M to N based on the predic- 
tor and the gain vector of order M without sacrificing 
the performance. However, the derivation presented in 
this paper is different from that of Ref.[l]. Instead of 
using the Max-Min and Min-Max principle, the deriva- 
tion shown here is direct and much easy to understand. 
The most important characteristic of the fast PLS algo- 
rithm is its good numerical performance. In the paper, 
we adopt a linear time-variant state-space method for 
its stability analysis. The transition matrix of the pro- 

posed algorithm is derived and its ensemble average is 
evaluated. The eigenvalues are shown to be asymp- 
totically all less than unity. Computer simulations are 

carried out to confirm our analysis. 

2. DERIVATION OF FAST PLS 
ALGORITHM 

The derivation is based on the backward PLS (BPLS) 

algorithm that can be written as 

&(n) = c’,(n - l)um(n) + u(n - 7-n) (1) 

B,(n) = X&(n - 1) + r,(n)&(n) (2) 
XB,(n - 1) 

Ym+l(n) = B*(n) YmCn> (3) 

c,(n) = c,(n - 1) - r,(n)&(n)L(n) (4) 



i&+1(n) = [ ‘mtn)] 

where I& is the backward a priori prediction error, 

B,,,(n) is the minimum power of $m(n), cm(n) is the 
tap-weight vector of the backward predictor, y,,,(n) is 

the conversion factor, k,,.,(n) is the normalized gain vec- 
tor, u,(n) is the input vector and X is the forgetting 
factor. 

The use of the normalized gain vector Em(n) instead 
of the gain vector k,,,(n) will be explained latter. 

Assume that the input signal can be modeled by an 
.4R( M), implying that the use of the predictor of order 
M is sufficient. The problem is how to extend the gain 

vector from EM(~) to kN(n) based on the knowledge of 
the M-th order backward predictor with least increase 
of computation. For m > M, the optimum choice of 
this predictor results 

[ 

&n-M 

. CM(n-m+M-1) 1 (6) 
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To prove (6), we first compute the BPLS algorithm 
to get kM+i(n) and the predictor of order M. Then, 
we write (5) for m = M + 1 as 

GM+&-‘) kM+dn) = o [ 1 tihf+l (n) 
+XB 

cM+l(n - 1) 

M+l(n - 1) 1 1 (7) 
From the assumption, the first term of cM+l(n - 1) is 

zero, that is 

We want to determine the tap-weight vector of the 

backward predictor cM+l(n - 1) so that the predic- 
tion error $.w+i(n) and its error power B,w+l(n) can 
be minimized. Since 

lirM+l(n) = c’,,,( n - l)uMtl(n) + ~(n - M - 1) 

= C’,(n - l)u.w(n - 1) + u(n - M - 1) (9) 

the optimum predictor, which uses u(n - I), . . . , u(n - 
M) to predict u(n - M - l), is ~~~(72 - 2) that satisfies 

$,bf(n - 1) = c’,(n - 2)u,v(n - 1) + u(n - M - 1) 

(10) 

where $M (n - 1) is the minimum prediction error (least 
squares solution), that is 

tiM(n - 1) = min[+M+l(n)] 

Under the constraint of using $M(n - l), from (2), 

the minimum prediction error power we can get is 

BM(n - 1) = XB,w(n - 2) + yM(n - l)+&(n - 1) (11) 

which means 

B,u(n- 1) = min[Bw+l(n)] 

Therefore, we have 

*,utl (n) %+1(~ - 1) 

XBMtl (n - 1) 1 1 1cIM(n - 1) 0 

= XB,u(n - 2) [ cM(n - 2) 1 (12) 
1 

Following the same procedure, we can prove (6). 
Notice that no additional computation is needed for 
obtaining (6) except some delays when m > M. This is 
the key point that makes the computation reduction of 
the BPLS algorithm possible. So the update equation 
for iN(n) can be written as 

knr(n) = [- 1 k.44 (n> 
ON-M 

+ 

N-M-1 
0; 

c 
$M(n - i) 

ABM(n - i - 1) [ 1 CM (n ; i - l) (13) 
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The extension of the conversion factor Y,,, (n), how- 
ever, does not satisfy this relation, that is 

rm(n> # -m(n - m + M) (14) 

This is because y,,,(n) involves only an order-update 

recursion as shown in (3). There is no relation of rm(n) 
among the time-update recursions. This fact gives the 
reason why the fast BPLS algorithm should be derived 

based on the normalized gain vector c,(n). If the gain 
vector km(n) is used, then we can write 

Since (15) includes r,,,(n), the result of (13) can not be 

obtained. We note that this problem was not clarified 

in Ref.[l]. 

The extension of the conversion factor can be ob- 

tained from its definition [5] 

rm(n) = 1 - uz(n)km(n) = 
1 

1 + ug(n)i;,(n) 
(16) 



Multiplying both side of (13) by u;(n) and using (1) it is shown in [4] that numerical stability of (18) is 

and (16)) we get determined by the eigenvalues of ,,lic E[A(n)]. 

As long as kN(n) and yn;(n) are available_, the gain 
vector can be computed by k.v(n) = yN(n)kN(n). 

Equations (13) and (17) can be further simplified 

[l], which result in the same form as the Version 3 of 

the FNTF algorithms. 

The computational load of the fast BPLS algorithm 
is about $M’ + 5n/l + 2N, which is comparable to 

5M + 2N required by the combination of the FTF and 
the FKTF algorithms when M is small. This is usually 

satisfied in some applications like acoustic echo can- 
teller, in which a speech signal is used as the input. 

3. STABILITY ANALYSIS 

The most important characteristic of the fast BPLS 
algorithm is its good numerical performance. In this 
section, we will prove this property. 

The prediction part of the BPLS algorithm can be 
modeled by the following nonlinear state-space form [4] 

@(n) = f [@(n - l),um(n>l (18) 

where o(n) and u,(n) denote the state-space variables 
and the tap-input vector, respectively. For a finite pre- 

cision implementation, roundoff errors are introduced, 
so that 6(n) = o(n) + A@(n). Assuming that the er- 
rors are small, (18) can be linearized in the presence of 
the roundoff errors, which leads to 

A@(n) = A(n)AO(n - 1) + V(n) (19) 

where V(n) represents the instantaneous contribution 
of the roundoff noise, and 

A(n) = 00 f [@Jum(n)llo=o~n-l~. (20) 

This is a linear time-variant system with a signal-dependent 
A(n) matrix. Therefore, an exact statement about the 
deterministic stability is difficult to make. Neverthe- 
less, we can make certain statistical statements when 
the input signal u(n) is stationary and ergodic. More 

precisely, it is shown in [4] that the state transition 
matrix 

In particular, the state-space variables that involve 

the time-update recursions in the BPLS algorithm can 
be expressed by 

(22) 

Substituting (1) to (4) and noticing that k,(n) = 
T,,, (n)k, (n), we can write the first state-space variable 

as 

c,(n) = (1, - L(n)u~(n))c,(n - 1) 

+u(n - m)k,(n) (23) 

where I, is an m x m identity matrix. For the second 

state-space variable, substituting (1) to (2), we have 

B,,,(n) = XB,(n - 1) 

+rm(n)cZ(n - l)um<n)u’,(n)cm(n - 1) 

+2u(n - m)uL(n)c,(n - 1) + u2(n - m)(24) 

It is worth noting that the gain vector k,,,(n) and the 
conversion factor y*(n) are not state-space variables 
because they involve only the order-update recursions. 

From (20), the transition matrix A(n) is obtained 
by differentiating the state-space model (18) with re- 
spect to its state-space variables, which results in 

A(n) = 
1, - k,(n)uz(n) 0 

2y,(n)$h(n)uz(n) X (25) 

(26) 

Since 0 < X < 1 and A(n) is a block-lower-triangular, 

it remains to show that the eigenvalues of 

J%--km(n)uT,( )I n are asymptotically all smaller than 

unity in magnitude. 
For 1 - X << 1, from [5], we can derive 

J&@,,,(n) x (1 - X)-‘R 

where Q,,,(n) = 2 X”-‘-‘u,(+r~(~) and 
i=l 

R = E[u,(n)uz(n)]. 
Since km(n) = @;‘(n)um(n), it follows that 

Jiz E[k,(n)uz(n)] z (1 - X)1, (2’i) 

F(n,O) = A(n)A(n - l)...A(l) (21) 

has an asymptotic constant eigendecomposition that 

can be used to decide about the numerical stability of 

the original system. Using the averaging technique, 

Consequently, 

,ji~z E[I, - k,(n)uz(n)] z XI,, (28) 

which confirms that all the eigenvalues of E[A(n)] con- 

verge approximately to X as n - oc. 



The numerical property of the fast BPLS algorithm 
is closely related to the BPLS algorithm. It is not diffi- 
cult to see that if the backward predictor and the gain 

vector of order M is stable, then the extended gain 
vector of order N computed by (13) and (17) is also 
stable. 

4. SIMULATION RESULTS 

To confirm the validity of our analysis and demonstrate 

the improved numerical performance, computer simula- 
tions are carried out. -4n adaptive system identification 

problem is employed for the simulation. A floating- 
point arithmetic that consists of an 8-bit exponent and 

a variable mantissa is used for implementations. 
Figure 1 shows the residual error of the fast BPLS 

algorithm computed by using a variety of word-length 
mantissa bits and compared with the FNTF algorithms. 
As expected, the numerical performance of the fast 

BPLS algorithm is very robust to round-off errors pro- 
duced by finite-precision implementations. On the other 
hand, the FNTF combined with the fast transversal fil- 
ter (FTF) algorithm is unstable even under the double- 
precision implementation. 

5. CONCLUSION 

.4 numerically stable fast Newton type adaptive filter 
algorithm has been proposed. The derivation is based 
on the order-update FLS algorithm. The result is con- 
sistent with the FNTF algorithms, but the derivation is 
direct and simple to understand. The numerical prop- 
erty of the proposed algorithm has been analyzed by 
using the linear time-variant state-space method. The 
transition matrix of the BPLS algorithm is derived and 
the eigenvalues of the ensemble average of the transi- 

tion matrix are are shown to be asymptotically all equal 
to X. This results in a numerically stable and robust 
performance of the BPLS algorithm. The fast BPLS 

algorithm, which extend the gain vector using the pa- 
rameters computed by the BPLS algorithm, behaves a 

much improved numerical performance compared with 
the FNTF algorithms. Therefore, the fast BPLS algo- 
rithm can be applied to various fields, such as acoustic 
echo canceller, to provide a fast convergence rate and 
stable performance with less computation. 
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Figure 1: Simulation conditions: Speech signal input, 
X = 0.98, 6 = 1, unknown system N = 50 and has 

a sudden change at 500 samples. (a) RLS algorithm, 

N = M = 50, double precision, (b) Fast BPLS al- 

gorithm, N = 50: M = 10, 8-bit mantissa, (c) Fast 

BPLS algorithm, N = 50, M = 10, g-bit mantissa, 

(d) FNTF+FTF algorithm, 1%’ = 50, M = 10: double 
precision. 


