Effectiveness of Penalty Function in Solving
the Subset Sum Problem

Hong WANG, Zhigiang MA and Kenji NAKAYAMA
Department of Electrical and Computer Engineering
Kanazawa University, Kanazawa 920, JAPAN
{wh,ma,nakayama}@leo.ec.t.kanazawa-u.ac.jp

ABSTRACT

In this paper we investigate the evolutionary heuristics
used as approximation algorithm to the subset sum prob-
lem. We propose a graded penalty function in a fitness
function of genetic algorithms to penalize an infeasible
string in solving the subset sum problem. An exponential
term of generation variable, t?, is added into the penalty
function for increasing penalty generation by generation.
The experiments show that the proposed penalty function
is more efficient than other existing penalty functions. It
is suggested that the penalty pressure is increased step by
step.

Keywords: penalty function, genetic algorithm, subset
sum, combinatorial optimization.

I. INTRODUCTION

The Subset Sum Problem (SSP) is a kind of constrained
combinatorial optimization problem which can be used for
the optimal memory management in multiple program-
ming. The SSP is a Nondeterministic Polynomial complete
(NP-complete) problem whose computational complexity
is thought to increase exponentially as n increases. The
n means terms number of a sequence in a NP-complete
problem.

A Genetic Algorithm (GA) is a form of evolution that
occurs on a computer. Genetic Algorithms (GAs) are adap-
tive methods which may be used to solve search and op-
timization problems. Genetic algorithms are probably the
best known evolutionary algorithms. Their basic principles
were first laid down rigorously by Holland [3], and are well
described in [2] and [5].

We use a genetic algorithm described by pseudo code as
shown below.

Algorithm GA is
t := 0,
initialize P(t);
evaluate P(t);
while not terminate P(f)
do
t:=t+1;
P(t) := select P(t — 1);
mutate P(t);
recombine P(t);
evaluate P(t);
od '
end GA

0-7803-2902-3/96/$4.00© 1996 1IEEE

422

where t is generation, P(t) is a population of individual,

In this paper we present the results of applying the g.
netic algorithm to the SSP. Unlike many traditional a,.
proaches that use domain-specific knowledge and specia|.
ized genetic operators, we make use of a graded penalty
term incorporated in the fitness function of genetic al.
gorithms. An exponential term of generation variable i
added into a penalty function. We discuss influence of ;.
exponential term on GA procedures. An random algorithn,
is introduced for comparing with genetic algorithms.

II. SuBSET SUM PROBLEM

Given a set W of positive integers {wy, wa, -, w,} and
a positive integer C, the subset sum problem is to find
subset S of W whose sum is closest to, without exceeding,
C.

In order to run a genetic algorithm on a practical prob-
lem, a suitable coding for the problem must be devised. In
the SSP we assume x; denote w; in W, where z; € {0,1}.

it = 1,2,---,n. We define z; = 1 if w; exists in S and
z; = 0 otherwise. So the SSP can be expressed as follows:
n
Minimize C - Z w;iT; (1
i=1
n
Subject to Ew;:c,- <C (2)
i=1
z; €{0,1}, ¢=1,2,---,n

I1I. PENALTY FUNCTION

Because there are constraints in a constrained combina-
torial optimization problem, the solution space is a subsel
of search space. Recently, there are four methods used to
handle constraints with GAs: rejection of infeasible ofl
spring, repair algorithms [7], modified genetic operators.
and penalty functions [6; 4; 9]. '

When infeasible offsprings have been created, these of
springs can be rejected from entering next population. This
method spends a great deal of time in the evaluation and
rejection of these infeasible strings. When an infeasiblc
string has been created by an operator, special repair alg”
rithms for that operator can be employed to restore feas
bility. However, repair algorithms are problem specific. the
children often do not resemble their parents, and restoriné
feasibility may be as difficult as the optimization problen*

e In GAs, the method of penalty function is better than
the method of “rejection of infeasible offspring”.

o When penalty function is not relative to generation
number (8 = 0), the curve is not best.

e When 1 < 8 < +o0, the larger 6 is, the worse curve is.

e When % < 6 < 1, the curve is better than others.

These results have been gotten because infeasible strings
may give good genes to their offsprings.

V1. CONCLUSIONS

Genetic algorithms are effective, robust search procedure
for combinatorial optimization problems. Obviously, they
are more efficient than the random algorithm.

Since we only use domain-specific knowledge in the fit-
ness function and penalty function, and do not use domain-
specific knowledge in GAs, e.g. specialized genetic opera-
tors, GAs can be easily applied to a broad range of combi-
natorial optimization problems.

The method of penalty function is better than the
method of “rejection of infeasible offspring”.

It is suggested that infeasible strings will be progres-
sively reduced activity by penalizing them because infeasi-
ble strings may give good genes to their offsprings. If the
exponent of the generation in penalty function belongs to
closed interval [3,1], the effect will be all the better.

ACKNOWLEDGEMENTS

We gratefully acknowledge Dr. Y. Wang and others at
our laboratory for all the valuable discussions.

REFERENCES

[1] T. Back, A User’s Guide to GENEsYs 1.0. University
of Dortmund, July 1st 1992.

(2] D. E. Goldberg, Genetic algorithms in search, optimiza-
tion, and machine learning. Reading, MA: Addison-
Wesley, 1989.

[3] J. H. Holland, Adaptation in natural and artificial sys-
tems. Ann Arbor: The University of Michigan Press,
1975.

[4] J. A. Joines and C. R. Houck, “On the use of non-
stationary penalty funtions to solve nonlinear con-
strained optimization problems with GA’s,” in Pro-
ceedings of the First IEEE Conference on Evolutionary
Computation, pp. 579-584, IEEE World Congress on
Computational Intelligence, 1994.

[5] Z. Michalewicz, Genetic algorithms + data structures =
evolution programs. Artificial Intelligence, New York:
Springer-Verlag, 1992.

(6] A. L. Olsen, “Penalty funtions and the knapsack prob-
lem,” in Proceedings of the First IEEE Conference on
Evolutionary Computation, pp. 554-558, IEEE World
Congress on Computational Intelligence, 1994.

[7] D. Orvosh and L. Davis, “Using a genetic algorithm to
optimize problems with feasibility constraints,” in Pro-
ceedings of the First IEEE Conference on Evolutionary
Computation, pp. 548-552, IEEE World Congress on
Computational Intelligence, 1994.

424

(8] H. Wang, A Genetic Algorithm with Penalty Functions
for Combinatorial Optimization Problems. Master’s
thesis, Kanazawa University, Kanazawa 920, Japan,
January 1996.

[9] H. Wang, Z. Ma, and K. Nakayama , “Using genetic
algorithms to solve subset sum problem,” in Proceed.
ings of the Joint Conference of Hokuriku Chapters of
Institutes of Electrical Engineers, p. 355, Sept. 1995,

\hen the domain-specific knowledge is :?dded into. stan-
jard genetic operators, we can get modlﬁed‘genetxc op-
:-ratOTS for special problems. Hoxvever, modified genetic
gperators are also problem specific. .
" The methods of penalty function transform a constrained
roblem into an unconstrained one by penalizing those
.rings which are infeasible. We use a penalty function
{0 adjust the fitness of illegal individuals. The penalty
junction is inserted into a fitness function.

[n general, evaluation function and fitness function are
Jefined as follows:”

k
f(#) = 0(&) +3_siPi(3) ®)

fitness(z) = f~1(%) (4)

where £ = {z1,z2,-+-,z,} is an individual. O(Z), P;(¥)
and k denote an objective function, a penalty function and
the number of constraints, respectively. s; is 0 when £ is a
{casible solution and s; is 1 otherwise.
Because the SSP has a constraint, k equals 1 in the SSP.
In designing fitness functions, we make use of the follow-
ing two principles.

o First, a graded penalty function used in the fitness

function is an increasing function of vector £ and gen-
eration number .
A graded penalty function makes that different vectors
(Z) correspond to different penalty values. Moreover,
when an infeasible string becomes bad and generation
number is added, the value of penalty function is in-
creased.

e Second, the best infeasible string can never be better

than even the worst feasible string.
The fitness of feasible strings is bigger than the fit-
ness of adjusted infeasible strings. Therefore, feasible
strings are selected more easily than infeasible strings
in GAs.

According to these principles, we design equations for
the SSP as shown below.

f(f) =0(£)+31P1(£:t)9) (5)
0(3) = C — M(%) (6)
Pi(Z,t,0) = M(Z)(1+ %) - C (7)

where M(Z) = Y7, wizi, s1 € {0,1}, t denotes the gen-
“ration, @ is a positive real variable.

Therefore, f(Z) = C — M(Z) if £ is a feasible string and
/() = M(£)t? otherwise.

Equation (7) is a graded penalty function which asso-
“iates with generation variable t. According to equation

(7). the proposed penalty function has the following fea-
tires:

o When 6 = 0, there are no relationship between the
penalty function and the generation t. The penalty
function is a function of only Z.

o When 6 — +oo, the penalty function Pi(Z,t,6) —
+oo. If any infeasible string in population is found,
this string will not be selected to produce offsprings
because limg_.4o P1(Z,t,0) = +o0o. Therefore, this
case is equivalent to the method of “rejection of infea-
sible offspring”.

o When 0 < 8 < +oo, the larger 6 changes, the larger
penalty function changes, that is, the smaller fitness
of Z (fitness(Z)) changes.

IV. RANDOM ALGORITHM

This algorithm (RA) is purely a random search which
is good at exploration, but does no exploitation. It can
also be used to solve the SSP. We adopt it only to compare
with GA methods. The random algorithm is described by
pseudo code as follows:

Algorithm RA is
while total number of trial is less than
given number

do

select £ = (21,22, -, z,) randomly;
calculate O(Z) = C — Y0, wiz;;
collect the Z so that O(Z) is not
negative;
find ¥ with which O(Z) is minimizes;

- od

end RA

V. EXPERIMENTAL RESULTS

Effectiveness of the proposed penalty function for solving
the SSP is demonstrated by the following experiments.

We use the genetic algorithm software package
GENEsYs 1.0 [1] in our experiments. The parameters
of the SSP are n = 100, w; = random(0,999], C =
(r+3) 3", w;, the difficult degree coefficient r = 2 8.

In GAs, the population size is 50, the total number
of generation equals 600. The last result is gotten by
averaging over the 10 runs. We use the traditional ge-
netic algorithm (TGA) which includes proportional selec-
tion scheme, 2-point crossover, standard mutation, muta-
tion rate p,, = 0.001 and crossover rate p. = 0.6.

In the RA, there is no concept of “generation” in the
random algorithm, but in order to comparing with GAs,
we assume 50 trials in the RA equal one generation in GAs.
So 30000 trials in the RA correspond to 600 generations in
the TGA.

In order to compare penalty functions in the TGA, we
assign 6 in equation (7) equals 0,%, 1,2,3,5, 400, respec-
tively.

The experimental results are shown in figure 1. These
curves which are shown in figure 1 from the best to the
worst are “g = 1”7, “0 =17, “4 =07, “0 =27, “§ = 37,
“9=5", “0 = +00”, and “RA”.

From figure 1, we have the following results:

o The traditional genetic algorithms with any 4 are al-
ways better than the random algorithm.

423

| o

B T v T
H] g e .- -
7 i L .
b : ’
_ [{ :
R i
_ _ -t —
H
s LU
i _".- D
H
| det H
Fio i —
(I
i
)
[B
I UV S ~N
- in o
- __ o us D
i i pommm s
[cm==t
n i T
| —
i sy :
Shd i .
H
n il
P
] "m
! H
] -
P
— l—‘l-
H _2 -—
! ceed
N
~
o

()3

300 400 500 600
generation

200

100

Figure 1: Comparison of § in Penalty Functions and the RA

425

