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Abstract— The backward prediclor based least squares
(BPLS) algorithm, which is derived from the fast recursive
least squares (FRLS) algorithms, demonstrates a very sta-
ble and robust numerical performance compared with the
RLS and FRLS algorithms. However, the computational
load of the BPLS algorithms is O(N?). This makes it diffi-
cult to be implemented in real time applications even using
today’s DSP technology. In order to overcome this diffi-
culty, a method for reducing the computational complexity
of the BPLS algorithms is proposed. The result (we call it
the fast BPLS algorithm) is consistent with the fast New-
ton transversal filters (FNTF) algorithms, but the deriva-
tion is much simpler to understand. The most important
characteristic of the fast BPLS algorithm is its good nu-
merical property. Theoretical analysis and computer simu-
lations show that the fast BPLS algorithm provides a much
improved numerical performance compared with the FNTF
algorithms under a finite-precision implementation.

1 Introduction

In solving the least squares problem for transver-
sal adaptive filters, the RLS and the FRLS algorithms
are well known. However, little attention has been
paid to the use of the order-update of the FRLS algo-
rithm. This use leads to the algorithm we called the
predictor based least squares (PLS) that consists of
the forward PLS (FPLS) and backward PLS (BPLS)
algorithms. A comparative study on the numerical
performances of the BPLS and the RLS algorithms
has been done in [1]. It was shown that three main
instability sources encountered in both the RLS and
the FRLS algorithms, including the unstable behav-
ior of the conversion factor, the loss of symmetry and
the loss of positive definiteness of the inverse correla-
tion matrix, do not exist in the BPLS algorithm. This
leads to a much more numerically stable and robust
performance of the BPLS algorithm than that of the
RLS algorithm.

Unfortunately, the computational load of the PLS
algorithm is O(N?2), N is the order of the adaptive fil-
ter. This makes it difficult to be implemented in real
time applications even using today’s DSP technology.
In order to overcome this difficulty, a computational
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complexity reduction of the BPLS algorithm, we call
it the fast BPLS algorithm, is proposed in this pa-
per. The assumption for the proposed algorithm is
the same as that of the FNTF {2}, that is, if the input
signal can be sufficiently modeled by an autoregressive
of order M, where M is possible to be selected much
smaller than the order N of the adaptive filter, then
the gain vector can be extended from M to N based on
the predictor and the gain vector of order M without
sacrificing the performance. However, the derivation
presented in this paper is different from that of [2].
Instead of using the Max-Min and Min-Max principle
that is somewhat difficult to understand, the deriva-
tion shown here is direct and much easy to understand.
Furthermore, the derivation of the FNTF algorithms
is based on the FRLS algorithms and supposed to be
combined with the FRLS algorithms. This will inher-
ently accompany with the instability problem. On the
other hand, the proposed algorithm has a much im-
proved numnerical performance.

This paper is arranged as follows: In Sec.2, we give
the derivation of the fast BPLS algorithm. The nu-
merical property of the fast BPLS algorithm is ana-
lyzed in Sec.3. The effects of three main instability
sources are considered under a finite precision arith-
metic. Sec.4 presents some simulation results of the
fast BPLS algorithm using a variety of word-length
arithmetic. The comparison on the numerical perfor-
mances between the fast BPLS and the FNTF algo-
rithms is also addressed.

2 Derivation of Fast BPLS Algorithm

The derivation is based on the BPLS algorithm that
is written as

¥m(n) = cl(n = Dum(n) + u(n — m) (1)

Bm(n) = ABm(n — 1) + ¥m(n)¥2 (n) (2)
_ABp(n-1)

Tm+1(n) = W7m(n) (3)

em(n) =cm(n—1) - 7m(")¢m(")l-(m(") (4)

Kmia(n) = [E”(f")]
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+ Ym(n) [cm(n— 1)

ABm(n—1) 1 ] (5)

where Y, (n) is the backward a priori prediction error,
B (n) is the minimum power of ¥;m(n), cm(n) is the
tap-weight vector of the backward predictor, ym(n) is
the conversion factor, l-cm(n) is the normalized gain
vector and un(n) is the input vector.

The initial conditions for the BPLS algorithm are as
follows: At time n = 0, set ¢y (0) = O, Bn(0) = 4,
l-cm(O) = 0y, and v, (0) = 1, wherem = 1,2,--- M. At
each iteration n > 1, generate the first-order variables
as follows:

ki(n) = ch_:l((n—nz_T) (6)
7(n) = %—ll (7

where &;(n) is the first-order of the correlation matrix
that satisfies

&,(n) = A®y(n — 1) + u*(n) (8)

where ¢,(0) = 4.

The use of the normalized gain vector k,,(n) instead
of the gain vector kn(n) will be explained latter.

Assume that the input signal can be modeled by an
AR(M), implying that the use of the predictor of order
M is sufficient. The problem is how to extend the gain
vector from kas(n) to ky(n) based on the knowledge of
the M-th order backward predictor with least increase
of computation. For m > M, the optimum choice of
this predictor results

¥m(n) [cm(n - 1)] _ _Yu(n—m+ M)
ABp(n—1) 1 ABy(n—m+ M -1)
Om—n
-[cM(n—m+M—1)] 9)
1

To prove (9), we first compute the BPLS algorithm
to get kar41(n) and the predictor of order M. Then,
we write (5) form=M +1 as

. karsr(n
For42(n) =[ M-!(-)l( )]
Yar+1(n)

ca41(n—1)
ABp4i(n—1) [ 1 ] (10)

From the assumption, the first term of cpr+1(n—1) is
zero, that is

ewn-0= o0y D

We want to determine the tap-weight vector of the
backward predictor cpr+1(n—1) so that the prediction

error Yar41(n) and its error power Bary1(n) can be
minimized.
Since

Ym41(n) = iy (n— Dupy(n) +u(n - M - 1)
=eh(n-Nuy(n-)+un-M-1) (12)

the optimum predictor, which use(ﬁ(n -1),---,u(n—
M) to predict u(n— M —1), is cpr(n — 2) that satisfies

Ym(n—1)=ci(n—2)up(n — 1)+ u(n— M - 1)
(13)

Yum(n — 1) is the minimum prediction error (least
squares solution), that is

Ym(n — 1) = minfyar41(n)]

Under the constraint of using sr(n — 1), the mini-
mum prediction error power we can get is

Ba(n —1) = ABu(n — 2) + vm(n — Dj(n — 1)

(14)
which means
Bar(n — 1) = min{Bar41(n)]
Therefore, we have
,\B¢M+l(n) [CM+1(" - 1)]
My1(n—1) 1
- 3\%‘17(%:1——_12)) [cM(r(l:— z)} (15)

Following the same procedure, we can prove (9). No-
tice that no additional computation is needed for ob-
taining (9) except some delays when m > M. This is
the key point that makes the computation reduction of
the BPLS algorithm possible. So the update equation
for kn(n) can be written as

kn(n) = [EM(n)]

On-m
N-M-1 0:
~— Yar(n —i) em(n—i-1)
+ ;0 YBa(n —i-1) 1 (16)

On-m-i-1

In summary, when only the information of the M-
th order backward predictor is available, the optimum
extension of the predictor for m > M satisfies the
following relations

Ym(n) = Ypy(n —m+ M) (17)
Bm(n) = By(n—m+ M) (18)
Cm(n) = [cM(nor:nM+ M) (19)
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The extension of the conversion factor v (n), however,
does not satisfy this relation, that is

Tm(n) #ym(n—m+ M) (20)

This is because v, (n) involves only an order-update
recursion as shown in (3). There is no relation of yn(n)
among the time-update recursions. This fact gives the
reason why the fast BPLS algorithm should be derived
based on the normalized gain vector l-cm. If the gain
vector ko, is used, then we can write

km+1(n) =[kmén)]

¥m(n)¥m(n) [cm(n)]
Bn(n) 1
Since (21) includes vy, (n), the result of (16) can not be
obtained. We note that this problem was not cleared
in [2].
The extension of the conversion factor can be ob-
tained from its definition (3]

+ (21)

m(m) = 1= v (W) () = ——— (il)f( (n)

: (22)

Multiplying both side of (16) by uX (n) and using (1)
and (22), we get

1 1 VET (e

n(n) = m(n) + ; ABpy(n—1i-—1)
(23)

As long as ky(n) and yn(n) are available, the gain
vector can be computed by kny(n) = v (n)kn(n).

The summations on the right side of (16) and (23)
can be further simplified [2]. Let gny(n) and fn(n)
denote the summations of (16) and (23), respectively,
then we have

gn(n)] _ 0 Yum(n)
[#07)= [gwn-) * 5B
cM(T;_I) Ym(n— N+ M)

' T ABy(n-N+M-1)
L On-m
[ ON—um

ley(n=N+M-1) (24)
I 1

and
Yiy(n)
fN(n) =fn(n—-1)+ EM_AER_—_I)
¥l (n =N+ M) (25)

“ABu(n-N+M-1)

The results of (24) and (25) are the same as the
Version 3 of the FNTF algorithm.

The computational load of the fast BPLS algorithm
is about 3M?2 + 5M + 2N. Since M <« N is usually
satisfied in some applications such as acoustic echo
canceler, the computation reduction can be significant.

3 Numerical Analysis

There are many investigations concerning the nu-
merical instability problems of the RLS algorithm and
its fast versions reported in the literature. These in-
clude the unstable beliavior of the conversion factor,
the loss of symmetry and the loss of positive defi-
niteness of the inverse correlation matrix of the input
[4)-[7]). In [1], we have proved that these instability
problems do not exist in the BPLS algorithm. In this
section, we extend the conclusions to the fast BPLS
algorithm.

3.1 Conversion Factor

The extension of the conversion factor from order
M to N is shown by (23). Notice that the first term
on the right side of (23) 1/yar(n) > 1 and the second
term is always greater or equal to zero. So we have
0 < yn(n) < 1. Apparently, this result is also true in
a finite-precision implementation.

However, if we use the simplified update recursion
(25), then the result may not be valid under a low-bit
word-length arithmetic due to the subtraction involved
in (25).

3.2 Symmelric Properly

Under the normal operation, the inverse correlation
matrix of the input P,,(n) = ®;!(n) should be sym-
metry, that is

Pn(n) = PL(n) (26)
We have shown that this property will be destroyed
in the RLS algorithm but remained in the BPLS algo-
rithm when a finite-precision arithmetic is used [1]. In
order to extend this property to the fast BPLS algo-
rithm, we use the relation kn,(n) = Pm(n—1)um(n)
and rewrite the summations on the right side of (16)
as

TPiv(n = uy (n)
0;
N 1 em(n—i—1)
- ; ABp(n—i—1) 1
ON-M-i-1

-[0,' cM(n -i—-1)1 ON-M-s‘—l] -upy(n) (27)
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Fig. 1. Block diagram of adaptive system identification.

T
Apparently, Py (n—1) = (Pjv(n - 1)) is satisfied.
It is not difficult to show from (27) that the symmetry
is also held under a finite-precision implementation.

3.8 Positive Definileness

The positive definiteness of P,,(n—1) can be defined
as

ul (R)Pn(n = Dun(n) >0 (28)

where u,,(n) # 0 is the input vector.
Left multiplying (16) by un(n), yvielding

uf(n)Py(n = Duy(n) = up(n)Par(n — uy(n)
N-M-1

+ Z B:fi(‘;(': i -)1)
i=0

We have proved that up (n)Pp(n — 1)ups(n) > 0 [1].
Following the same procedure as shown in [1], we can
prove that the summation on the right side of (29) is
always greater or equal to zero. So the nonnegative
definiteness of Px(n — 1) is guaranteed despite finite-
precision implementation.

Care must be taken if we use (24), the nonnegative
definiteness of Py(n — 1) may not be remained un-
der a finite-precision implementation because of the
subtraction involved in (24).

(29)

4 Simulation Results

To confirm the validity of our analysis and demon-
strate the improved numerical performance, some sim-
ulations are carried out. An adaptive system identi-
fication problem is employed for the simulation. Its
block diagram is shown in Fig.1. The blocks enclosed
by the dashed line are implemented by using a floating-
point arithmetic that consists of an 8-bit exponent and
a variable mantissa (including a sign bit). The blocks
labeled Q quantize double-precision input data into
finite-precision ones that are used in the adaptive fil-
ter algorithm. A speech signal shown in Fig.2(a) is

(a) Input Speech Signa)

'
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(b) Fast BPLS (6-bit mantissa)
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(d) Fast BPLS (6-bit mantissa)
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Fig. 2. Simulation conditions: N = 50,M = 10, 6-bit man-
tissa. (a) Input speech signal, (b) Conversion factor 5 (n) of
fast BPLS algorithm, (c) Symmetric property of fast BPLS algo-
rithm computed by using [P, (n - 1)uy(n) - (u (n)P (n-

1)) Il. (d) Positive definiteness of fast BPLS algorithm com-
puted by using uf, (n)P%(n - 1)uy(n).

used as the input u(n). The additive noise v(n) is a
white noise with zero mean. The variances of u(n) and
v(n) are unity and 0.001, respectively. The unknown
system is supposed to be a 10-th order butterworth IIR
filter. The number of tap weights used in the adap-
tive filter is 50. The initial parameter § = 1 and the
forgetting factor A = 0.98 are used.

The simulation results of three main instability
sources effects on the fast BPLS algorithm are shown
in Fig.2(b)-(d). From these results, we make the fol-
lowing observations:

o The conversion factor in the fast BPLS algorithm
is always in the range between 0 and 1 even
though a low bit mantissa is used.

o The symmetric property of Py (n—1) is remained
in the fast BPLS algorithm.
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o No loss of positive definiteness in the fast BPLS
algorithm occurs under a finite precision imple-
mentation.

These observations have confirmed the validity of
our analysis presented in Sec.3.

Without the effects of three main instability sources,
the numerical performance of the fast BPLS algorithm
is expected to be much improved. Thisis virtually true
through computer simulations. Figure 3 shows the
residual error of the fast BPLS algorithm computed
by using a variety of word-length mantissa bits and
compared with the FNTF algorithms. As expected,
the numerical performance of the fast BPLS algorithm
is very robust to round-off errors produced by finite-
precision implementations. On the other hand, the
FNTF combined with the fast transversal filter (FTF)
algorithm is unstable even under the double-precision
implementation.

5 Conclusion

A method for reducing the computational complex-
ity of the BPLS algorithm has been proposed. The
derivation is based on the assumption that the input
signal can be modeled by an AR(M), where M can
usually be selected much smaller than the order N of
the adaptive filter. The derivation is direct and simple
to understand. The result is consistent with the FNTF
algorithms, but the numerical performance is much
improved. The improved numerical property is mainly
due to the stable behavior of the conversion factor, the
inherent symmetry and the guaranteed positive defi-
niteness of the inverse correlation matrix of the input.
These numerical properties have been analyzed under
a finite-precision arithmetic. The computer simula-
tion has confirmed the validity of these analyses and
shown that the fast BPLS algorithm performs much
more stable and robust than that of the FNTF al-
gorithms combined with the RLS or the FRLS algo-
rithms. Therefore, the fast BPLS algorithm can be
applied to various fields, such as acoustic echo can-
celer, to provide a fast convergence rate and a stable
numerical performance with less computation.
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