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ABSTRACT: This paper discusses properties of
activation functions in multilayer neural network ap-
plied to pattern classification. A rule of thumb for
selecting activation functions or their combination
is proposed. The sigmoid, Gaussian and sinusoidal
functions are selected due to their independent and
. fundamental space division properties. The sigmoid
function is not effective for a single hidden unit. On
the contrary, the other functions can provide good
performance. When several hidden units are em-
ployed, the-sigmoid function is useful. However, the
convergence speed is still slower than the others. The
Gaussian function is sensitive to the additive noise,
while the others are rather insensitive. As a result,
based on convergence rates, the minimum error and
noise sensitivity, the sinusoidal function is most use-
ful for both without and with additive noise. Prop-
erty of each function is discussed based on the in-
ternal representation, that is the distributions of the
hidden unit inputs and outputs. Although this se-
lection depends on the input signals to be classified,
the periodic function can be effectively applied to a
wide range of application fields.

I INTRODUCTION

Advantage of multilayer neural networks (NNs)
trained by the back-propagation (BP) algorithm is to
extract common properties, features or rules, which
can be used to classify data included in several
groups [1]. Especially, when it is difficult to ana-
lyze the common features using conventional meth-
ods, the supervised learning, using combinations of
the known input and output data, becomes very use-
ful.

We studied the multi-frequency signal classifica-
‘tion using multilayer neural network[2], [3]. Since
the frequencies are assigned alternately to several
groups, it is very difficult to distinguish the wave-
forms within a short;period, and the limited number
of samples by conventional methods.
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The following advantages of the NN over conven-
tional methods were confirmed. The neural net-
work can classify the signals using a small number of
samples and a short observation period with which
Fourier transform can not classify. The number of
calculation is sufficiently smaller than the convolu-
tion calculation, required in digital filters.

In the previous work, a sigmoid function was used.
However, it is not always optimum. Therefore, prop-
erties of activation functions are investigated in this
paper. For this purpose, some typical functions are
taken into account. They include a sigmoid function,
a radial basis function[2] and a periodic function.
They will be compared with each other in classifying
multi—frequency signals. Effects of noisy signals will
be also discussed in the training and classification
processes.

As a result, a rule of thumb for selecting the suit-
able functions and the combination of several kinds
of functions will be provided.

II MULTI-FREQUENCY SIGNALS
Multi-frequency signals are defined by

R
= ) Amrsin(@prnT +6ms) (1)

r=1

1~ N y wPr = 27rfpr

Zpm(n)
n =

T is a sampling period. M samples of z,m(n), m =
1~ M , are included in the group X, as follows.

Xp——-{xpm(n),m:lNM},p:lNP (2)
In one group, the same frequencies are used.
Fp=[fplyfp2:~-'»pr]Hz>P=1~P (3)

Amplitude A,;, and phase.¢,,, are generated as
random numbers, uniformly distributed in following
ranges.

0<Amrsl; Os¢mr<27r (4)
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IIT MULTILAYER NEURAL NETWORK

3.1 Network Structure and Equations

A single-layer neural network is taken into account.
N samples of the signal z,,(n) are applied to the
input layer in parallel. The nth input unit receives
Zpm(n). Connection weight from the nth input to
the jth hidden unit is denoted wnj. The input and
output of the jth hidden unit are given by

N-1

net; = ) wnjzpm(n) +6; (5)
n=0

y; = fu(net;) (6)

Letting the connection weight from the jth hidden
unit to the kth output unit be wjg, the input and
output of the kth output unit are given by

J-1

nety = Z wjry; + Ok (7)
Jj=0

¥k = fo(netx) (8)

The activation function of the output layer is the
sigmoid function.

The number of output units is equal to that of
the signal groups P. The neural network is trained
so that a single output unit responds to one of the
signal groups.

3.2 Training and Classification

Signals are categorized into training and untrain-
ing sets, denoted X7, and Xy, respectively. Their
elements are expressed by z1,m (1) and zypm(n), re-
spectively.

The neural network is trained by using zrp,m(n),
m = 1 ~ My, for the pth group. Here, My is the
number of the training data. After the training is
completed, the untrained signals ypm (n) are applied
to the NN, and the output is calculated. For the
input signal zypm(n), if the pth output y, has the
maximum value, then the signal is exactly classified.
Otherwise, the network fails in classification.

IV SELECTION OF ACTIVATION
FUNCTIONS

What kinds of activation functions should be se-
lected is very important. At the same time, it is a
very difficult problem. In this paper, the following
typical functions are selected for the hidden layer.

When binary target can be considered, then the
sigmoid function can be used in the output layer.

Sigmoid function:

1
Y; = fsig(netj) = ]

+ e—(netj) (9)

Sinusoidal function: )
yj = fein(net;) = sin(wnet;) (10)
Gaussian function:

2
nelj

Y5 = foau(net;) = e (11)

The input vectors are distributed in a N-
dimensional space. Three functions divide the space
as follows:

) ' >ay, net_,' > Tu'g
faig(net;) { <o, net; < Taig (12)
> ay, netj — (2n7 + Z)| < Tein
. ts 2
fsin(net;) { < a_, |net; —(2nx + %ﬂ')l < Tsin (13)
, > ay, |net,~| < Tgau
fgdu(netJ) { <a-, lnet_,'l > Tgau (14)

Here, n is integer.

These space division fundamental, and indepen-
dent to each other. This is an idea behind selecting
the above three functions.

Next step of selecting activation functions is how
to combine them. It is also highly dependent on the
distribution of the input signals, and is very hard
to determine before hand. For this reason,-both the
homogeneous function and the composite functions
are investigated.

V SIMULATION OF TRAINING AND
CLASSIFICATION WITHOUT NOISE

5.1 Multi-frequency Signals

The number of frequency components is R = 3,
and the signal groups is P = 2, respectively. The fre-
quency components are located alternately between
the groups as follows: Fy = [1, 2, 3] Hz for Group 1
(#1) and F, = [1.5, 2.5, 3.5] Hz for Group 2 (#2).
The sampling frequency is 10 Hz, that is T = 0.1
sec. The number of samples N is 10. Therefore, the
observation interval is 1 sec.

5.2 Training and Classification

rpm(n), m = 1 ~ 200 and zypm(n), m = 1 ~
1800 are used. Simulation results are shown in Table
1. The training converged using three hidden units
for all activation functions. In the case of the Gaus-
sian and the sinusoidal function, the training almost
converged with one hidden unit. Detailed discussion
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will be provided in Sec. 7.

Table 1:Classification rates by three functions[%)

Activation | Hidden || Training Untraining
Function Unit #1 #2 #1 #2
Sigmoid 1 44.5 | 100 47.9 | 100
3 100 100 97.4 | 100

Sinusoidal 1 86.0 | 99.0 | 79.8 | 99.0
3 100 100 92.6 | 100

Gaussian 1 99.5 | 100 | 98.1 | 100

3 100 100 99.1 | 99.9

VI SIMULATION OF TRAINING AND
CLASSIFICATION WITH WHITE
NOISE

6.1 White Noise

White noise, denoted noise(n), is generated as ran-
dom number, and is added to the signal zpm(n).
Noisy signal z,,,,(n) is given by

(15)

Tpm(n) = Tpm(n) + noise(n)

6.2 Training and Classification

The noisy multi-frequency signals are used for
training. N is 10 and M is 200 for each group. After
training, untraining signals with white noise are ap-
plied, and classification rates are evaluated. White
noise is uniformly distributed in the range +0.5. The
results are shown in Table 2. Columns with (A) and
(B) list the recognition rates using the training sig-
nals without and with white noise, respectively. The
NN trained without noise is also used for comparison.
From these results, it can be confirmed that training
using noisy signals is useful to achieve robustness.
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Figure 1: Learning curves

VII COMPARISON OF THREE
ACTIVATION FUNCTIONS

7.1 Convergence Property Using Single
Hidden Unit

The NNs trained without noise are further inves-
tigated by hidden unit output distribution. Figure 2
illustrates this distribution, using the sigmoid (al),
the sinusoidal (b2) and the Gaussian functions (c1).
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Table 2: Classification rates using training signals
without (A) and with (B) white noise [%)
Activation | Hidden (A) (B)
Function Unit #1 #2 #1 #2
Sigmoid 1 470 | 52.9 | 92.8 | 28.5
3 973 | 8.4 82.6 | 78.0
Sinusoidal 1 80.2 | 20.9 | 61.7 | 87.7
3 65.9 | 36.2 | 799 | 82.7
Gaussian 1 98.2 | 4.8 71.7 | 65.9
3 85.3 | 46.3 | 79.8 | 70.2

6.3 Convergence Rates

Figure 1 shows learning curves obtained using the
three hidden units. The NN with the Gaussian func-
tion can converge faster than the other. However, the
error does not well decreased. The NN with the sinu-
soidal function can also converge faster. At the same
time, the error can be well decreased. A convergence
rate using the sigmoid function is slow. However,
the error can reach to the same level as in using the

sinusoidal function. \
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Figure 2: Hidden unit input and output distributions

In the case of using the. Gaussian function, the #2
signals locate around the peak. Differential coeffi-
cients around the peak are large, then, the #2 data
can be located in this area very fast. Most of the
#1 data are distributed both sides. On the other
hand, the distribution of the hidden unit inputs eas-
ily spread. Therefore, the Gaussian function is week
for additive noise.

In the case of the sinusoidal function, the hidden
unit inputs of the #2 locate near one of the peaks.
The sinusoidal function have large differential coef-
ficient except for the peak. Then the #2 data can
locate around one of the peaks fast. The #1 data
can locate in the region of fyi,(net;) < a_.
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In the case of the sigmoid function, the #1 and
the #2 data have to locate the right or left side.
Thus, the network have to adjust the weights , with
which the input data are completely separated into
the right or the left side. This requirement does not
match the distribution of the input patterns.

From these results, the hidden unit inputs of the
multi-frequency signals is concentrated on a narrow
range for one group, and the other is distributed
widely for the other group.

Figure 2 also shows the hidden unit inputs and
output distributions, in which random noise is added.
The networks are trained without noisy signals. In
the case of the Gaussian, the #2 data distributed
over the other region. Because a single peak is very
narrow. Then these data easily move to the other
group’s region. Thus, the accuracy is decreased
by noisy signals. The sinusoidal, the #2 data also
widely distributed , but the sinusoidal function is pe-
riodic function. So, there are several extream values.
Although the accuracy is decreased by the noise, it
is higher than that of the Gaussian function.

7.2 Convergence Property Using Three
Hidden Units

Homogeneous Activation Funtion:

Figures 3, 5 and 7 show distributions of the hid-
den unit inputs and outputs. The NN is trained by
using the signals without noise. The sigmoid, the si-
nusoidal and the Gaussian functions are separately
used. For each figure, (a), (b) and (c) correspond to
one of the hidden unit. (al), (b1) and (c1) are the re-
sponse for the #1 data and (a2), (b2) and (c2) are for
the #2 data. From these figures, there are two type
of distributions, that is concentrated and dispersed
distribution. One of two groups locate at near the
peak of the functions and the other distribute widely.

In Fig. 3, it is very interesting that the #2 data
locate at the middle of the slope. Since this region is
not saturated to one or zero, accuracy will be easily
changed by adding the noise. As shown in Table 2,
the classification rates are 97.3 % for #1 and 8.4 %
for #2. Thus, accuracy for #2 greatly reduced.

Figures 4, 6 and 8 shows distribution of the in-
puts of the two output units. In this figures, (a) and
(b) correspond to the #1 and the #2 data, respec-
tively. The region of overlap of the solid and the
doted lines will cause miss classification. We can in-
vestigate from these figures, how the hidden units
separate the signals into two groups. From the fig-
ures, the input space of the output units are well sep-
arated by the sigmoid and sinusoidal function. So, it
can be concluded that three hidden units cooperate
to make the distribution of the inputs to the output

unit be in linear separable. .
Composite Activation Functions:

Three functions can be combined in the same hid-
den layer. This combination is called, Composite
Activation Function in this paper.

Table 3 shows classification rates using the signals
without noise. In this table, the symbols A through
F correspond to the combination of the functions.
Training converged in all combinations.

The combination C, having three Gaussian func-
tions achieve the best accuracy. The convergence
rate is also the fastest among three function.

The combination D achieved better accuracy than
A, B, E, and F. The composite activation functions
from D to F, did not achieve better accuracy than
the function C.

Table 3: Classification rates using signals without noise

Combination of functions ‘Tralning Untraining

Sig | Sin Gauss #1 #2 #1 #2
A 3 0 0 100 100 | 97.4 100
B 0 3 0 100 100 | 92.6 100
C 0 0 3 100 100 | 99.1 99.9
D 1 1 1 100 100 100 98.3
E 2 1 0 99.5 | 100 | 97.4 100
F 2 0 1 100 100 | 97.4 100

Table 4 shows classification rates of the network
trained using noisy signals. Training did not con-
verge in all cases in this table. The network using
the homogeneous activation function A, B, C has
the best accuracy. The composite activation func-
tion networks C, D, E, F did not work well-than the
homogeneous function network. The Gaussian func-
tion is very sensitive to the additive noise.

Then, it can be concluded that the combined ac-
tivation functions have no advantage over the homo-
geneous one.

Table 4: Classification rates using signals with noise

Combination of functions Tratning Untraining

Sig | Sin Gauss #1 72 #1 #2

A 3 0 0 83.5 | 86.0 | 82.6 | 78.9
B 0 3 0 84.5 | 89.0 | 799 | 82.7
C 0 0 3 87.0 | 81.5 | 79.8 | 70.2
D 1 1 1 77.0 | 92.5 | 69.1 | 84.3
B | 2 [ 1 0 885 | 77.0 | 809 | 678
F 2 0 1 78.5 | 98.5 | 63.8 | 85.9

VIII CONCLUSIONS

Properties of the activation function for multi-
frequency signal classification has been discussed us-
ing multilayer neural network supervised by BP algo-
rithm. The Gaussian function can provide the high-
est performance for the input signals without noise.
But it is sensitive to the additive noise. The sigmoid
function is not useful for a single hidden unit. When
several hidden unit is used, the sigmoid function is
useful. This function is insensitive to the additive
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noise. Based on convergence rates, the minimum er-
ror and noise sensitivity, the sinusoidal function is
the most useful for both with and without noise.
Furthermore, the homogeneous activation function
is much better than the composite type activation
function in multi-frequency signal classification.
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