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ABSTRACT: A neural demodulator is
proposed for amplitude shift keying
(ASK) signal. It has several important
features compared with conventional
linear methods. First, necessary
functions for ASK demodulation, in-
cluding wide-band noise rejection,
pule waveform shaping, and decoding,
can be embodied in a single neural
network. This means these functions
are not separately designed but
unified in a learning and organizing
process. Second, these functions can
be self-organized through the learn-
ing. Supervised learning algorithms,
such as the backpropagation algo-
rithm, can be applied for this pur-
pose. Finally, both wide-band noise
rejection and a very sharp waveform
response can be simultaneously a-
chieved. It is very difficult to be
done by linear filtering. Computer
simulation demonstrates efficiency of
the proposed method.

I INTRODUCTION

Neural networks (NNs) have been
effectively applied to signal process-
ing and pattern recognition [1]-[5].
Features of NNs include self-organi-
zation, learning, nonlinear functions,
and parallel implementation. How to
utilize these features in each appli-
cation is an important point.

Communication = is also an in-
teresting apﬁlication field of NNs.
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Some nonlinear distortion can be
compensated for by using NNs [3].

In this paper, demodulation prob-
lems are dealt with. In the demodu-
lation process, undesirable signals
and noises are rejected through fil-
ters. The extracted signal is trans-
formed into its original or another
desired waveform. Noise rejection
filters usually distort a time re-
sponse. If the original waveform is
very sharp, like a pulse waveform,
this distortion becomes fatal error.

In this paper, a neural demodulator
for amplitude shift keying (ASK) sig-
nals is proposed. A multilayer neural
network and the backpropagation al-
gorithm [6] are employed. The purpose
of this model is to achieve both
wide-band noise rejection and a very
sharp waveform response, which are
difficult to be done by linear filters.
Trained network structure, internal
representation and an optimum
activation function are discussed.
Simulation results are also shown in
order to examine efficiency of the
proposed method.

I STRUCTURE OF NEURAL DEMODULATOR

Figure 1 shows the proposed neural
demodulator. The received signal x(n)
includes the ASK signal xa(n) and
noise e(n) as follows:

x(n) = xa(n) + e(n) (1)
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Input Layer (Delay Line)

Fig.1 Proposed neural demodulator.

The input layer is composed of a
delay line, including N-1 delay ele-
ments. T is a sampling period. The
output of the ith delay element is de-
noted x(n-i). N samples of x(n), that is
x(n-i), i=0 ~ N-1, are transmitted
through connections in parallel. An
offset unit_is used, which always out-
puts 1 to the hidden units and to the
output unit in order to adjust bias.

Let connection weights from x(n-i)
to the jth hidden unit be w;;, and
from the jth hidden wunit to the
output unit be w;.. Network equations
are expressed as follows:

N-—1
uy(n) = ¥ wisx(n-i) + wy (2)
vi(n) = fu(us(n)) (3)
M-1
net(n) =, WioVi(n) + wo (4)
y(n) = fo(net(n)) (5)

w; and Wo are connection weights from
the offset unit to the jth hidden unit
and the output unit, respectively.
fu(-) and fo(:) are activation func-
tions of the hidden units and the out-
put unit, respectively.

The original ASK signal xa(n) is
used as target. xa(n) is closely re-
lated to its neighborhood samples,
that is xa(n-i), -N/2<i<-1and 1sis<
N/2. Furthermore, the output y(n) is
calculated using x(n-i), 0<i<N-1, as
shown in  Egs.(2)-(5). Therefore,
Xa(n-N/2) is used as the target for
y(n). The output error is evaluated by

6 (n) = xa(n-N/2) - y(n) (6)

It should be pointed out that the
proposed NN does not separate func-
tions required, rather all functions
are unified in a single NN.

I LEARNING ALGORITHM AND ACTIVATION
FUNCTIONS

3.1 Learning Algorithms

Backpropagation algorithm is very
powerful for multilayer neural
networks [6]. It is also employed in
our model. An important point of the
learning is to automatically design
necessary functions, including wide
noise rejection and pulse waveform
regeneration. Because these require-
ments are difficult to be' satisfied si-
multaneously by linear signal
processing. This point will be further
investigated in Sec.IV.

3.2 Activation Functions

Another important point of neural
network design is to optimize
activation functions for each
application. However, this issue still
remain as an open question.

In this paper, we propose a valley
function f.a.() given by Eq.(7).

2

fror(X) = s7 (7)
fera(Xx) = 1-e

Tre> ®

Figure 2 shows this valley function,
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which is used in the hidden layer. In
the output unit, the sigmoid function
given by Eq.(8) is used. Furthermore,
for comparison, it is also used in the
hidden layer.

1
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Fig.2 Valley activation function.

The purpose of using the valley
function is to realize a full-wave
rectifier. The input to the jth hidden
unit u;(n) is a sum of products of the
received signal samples x(n-i) and the
connection weights w;;. Thus, u;(n)
can be filtered signal, in which the
additional noise is removed. In other
word, it can be a sinusoidal waveform.
For this waveform, the valley func-
tion works as a full-wave rectifier.

However, the valley function is not
exactly a full-wave rectifier. Because
differential of the activation func-
tion is needed in the gradient algo-
rithm. Furthermore, the noise can be
completely rejected in u;(n). Finally,
a single valley function cannot
provide good performance as shown in
Sec. IV. This means the hidden unit
plays not only a rectifier but also
pulse waveform generation. The latter
requires fine phase adjusting among
several hidden unit outputs. This can
be done automatically.

By combining two sigmoid functions,
a valley function can be formed as

—fg:g(X‘l'Xa) + felc(x"'xo) + 6 (9)

@ is a positive constant. This means
two hidden units, having fsig(), are

required to achieve the same
performance as in using a single hid-
den unit, having fva:().

Iv. SIMULATION AND DISCUSSIONS

4.1 Conditions of Simulation

The minimum pulse width is 50 msec,
the carrier frequency is f.,=880Hz, and
the sampling frequency is fes=4kHz.
Thus, the minimum pulse width includes
200 samples. Examples of the ASK
signal and random noise are shown in
Figs.3(a) and 3(b), respectively. The
number of samples, applied to the
network in parallel, is chosen to 200,
which can cover the minimum pulse
width.

The input signal samples, occupy
from 0 to 100 sec, are used for

Amplitude

(& 0 005 01 015 0.2 025 0.3

Amplitude

4
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b) time [sec.]

Fig.3 Examples of ASK signal (a) and
white noise (b).
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training. It includes 200 pulses with
the minimum width and 4x10® sampling
points. After 100 sec, the input signal
is used for evaluating performance of
the trained "and fixed  neural
demodulator.

4.2 Convergence Property and
Generalization

Figure 4 shows learning curves. The
curve A indicates the error squared
S8 2(n) obtained using one hidden unit,
having feig(). The curves B show the
results of using two hidden units with
fsig() and one hidden unit with
fvai(). The curves C, D and E indicate
three hidden units with feig() and two
and three hidden units with f,a,(), re-
spectively.
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Fig.4 Learning curves.

In the first 100 sec period, the
neural network is trained using x(n).
In the rest 100 sec, the trained and
fixed NN is examined using the new
coming signal x(n). From Fig.4, it can
be confirmed that the error does not
increase after 100 sec. This guaran-
tees generalization for untrained
data. Furthermore, an error rate in
detecting '1' and '0' in this interval
is zero, that is 100% accuracy.

4.3 Activation Functions

From these results, it can be

concluded that the valley function is
more useful than thé sigmoid one.
Three hidden units are sufficient in
this problem. As discussed in Sec.3.2,
two sigmoid functions are required in
order to achieve the same performance
as in using a single valley function.

4.4 Output Signal and Error

Figure 5 shows the output y(n) with
a solid line, the error 6 (n) squared
with a dotted line and the target
Xa(n-N/2) with a dashed line. From
this figure, the neural network can
outputs very sharp waveform. A single
linear filter, designed to reject
wide-band noise, cannot produce such
a sharp response. Because a high-Q
linear filter usually causes waveform
distortion in the time domain.
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Fig.5 Output y(n)-solid line, target
xA(Ir)l—N 2)-dashed line and error
S (n)-dotted line.

4.5 Connection Weights

Figure 6 shows the connection
weights from the input layer to two
hidden units (al) and (a2), and from
the hidden layer to the output unit
(b). Transformation from the hidden
layer to the output is only summation.

Amplitude of Fourier transform for
the connection weights (al) in Fig.6 is
shown in Fig.7. It has peak amplitude
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at the signal frequency fo=880Hz. This
frequency response can be easily ex-
pected based on property of linear

filtering. However, two sets of
connection weights cooperate with
each other to suppress wide-band
noise, at the same time, to produce
very sharp time response. For this
purpose, fine adjustment of phase re-
sponses is required. The NN can do
this optimization automatically.
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Fig.7 An}plltude of Fourier transform
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Fig.8 Learmng curve for sinusoidal
noise. Three hidden units,
having valley functlon

4.6 Rejection of Periodic Noise

Sinusoidal noise ‘is added to the
ASK signal. When the noise frequency
is close to the signal frequency, a
high-Q BPF is usually needed. This
situation was also simulated using the
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proposed neural demodulator.

Figure 8 shows the learning curve
obtained by using three hidden units,
having the valley function. The noise
frequency 1is 900Hz, which is very
close to the signal frequency 880Hz.
The error at 100 sec is almost the
same as in Fig.4. Thus, the neural dem-
odulator can suppress periodic noise,
whose frequency locates very close
the signal frequency.

4.7 Effects of Using Linear Bandpass
Filter

Another way to reject noise is to
use a bandpass filter (BPF) just be-
fore the NN. This method was also sim-
ulated for comparison. Figure 9 shows
a learning curve. Three hidden units,
having the valley function are used.
As a result, the BPF method cannot
provide good performance like the
proposed NN. The reasons are ex-
plained in the following.

First, the BPF output still includes
the noise, whose spectrum locates
near by the signal. Even though the
wide-band noise is suppressed, the
narrow-band noise can remain, which
has high correlation with the signal.
This noise degrades waveform shaping.
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Fig.9 Learni 1%curve for using BPF and
ree den units, having valley
funct on.

On the other hand, the noise can be
well reduced by using ‘a very high-Q
BPF. In this case, however, the time
response, that is a pulse waveform re-
sponse, Is greatly distorted.

V CONCLUSION

The neural demodulator for ASK sig-
nals has been proposed. Necessary
functions, including wide-band noise
rejection, pulse waveform regenera-
tion and decoding, can be embodied in
the single NN. These functions are
self-organized through the learning.
The activation function has been
proposed, which can play a role of
rectifier.

Computer simulation shows efficien-
cy of the proposed method. White
noise and sinusoidal noise, having al-
most the same level as the signal pow-
er, can be rejected. At the same time,
very sharp pulse waveform can be
generated. Accuracy of demodulation
was 100% in the interval from 100 sec
to 200 sec. Conventional methods,
using a BPF, cannot provide good
performance like the NN.
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