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ABSTRACT

Signal classi�cation performance using multilayer neural network (MLNN) and the conventional

signal processing methods are theoretically compared under the limited observation period and

computational load. The signals with N samples are classi�ed based on frequency components.

The comparison is carried out based on degree of freedom the signal detection regions in an

N-dimensional signal space. As a result, the MLNN has higher degree of freedom, and can

provide more exible performance for classifying the signals than the conventional methods.

This analysis is further investigated throught computer simulations. Multi-frequency signals

and the real application, a dial tone receiver, are taken into account. As a result, the MLNN

can provide much higher accuracy than the conventional signal processing methods.

1. Introduction
Recently, neural networks (NNs) [1] have been applied

to signal processing �eld. Signal detection [2]{[6], a

demodulator for shift keying signals [7]{[9] and multi-

frequency signal classi�cation [10],[11] are included. In

these applications, the NN methods can provide better

performance than conventional signal processing meth-

ods. However theoretical comparisons between them

have not been well discussed.

The purpose of this paper is to compare perfor-

mance of signal detection or classi�cation by a multi-

layer (ML)NN and conventional signal processing meth-

ods. The comparison is discussed based on their pattern

classi�cation mechanism. Classi�cation of the signals

carrying information as frequencies are taken into ac-

count. Because, frequency analysis is one of the impor-

tant processings in communication and signal process-

ing �elds. Multi-frequency signal classi�cation, such as

a dial tone detector, is a concrete example of the above

classi�cation.

The following environment is taken into account

in this paper. First, signal classes are de�ned by fre-

quency combination. Thus, multi-frequency signals in-

clude several frequency components, which are located

alternately among the classes. Amplitude and phase

for each frequency component may have arbitrary val-

ues. Moreover, we impose the following conditions : An

observation period and computational load are strictly

limited. We encounter such limitations in some prac-

tical applications. Furthermore, from the viewpoint of

frequency analysis, the above limitations are severe con-

ditions. Hence, accuracy of signal detection and classi-

�cation by the above methods can be compared.

2. Signal Detection and Classi�cation

by Conventional Methods

2.1. Frequency Analysis Methods

Frequency analysis methods, including �lters and Fourier

transform, extract frequency components by calculating

the inner products of the input signal x(n) and �lter co-

e�cients h(n) or Fourier kernel e�j!nT . The frequency

components can be found by detecting large outputs

in the power among the signal groups. In the �lter

method, the output is given by

yp(n) =

NX

m=1

x(m)hp(n�m); p = 1 � P (1)

where hp(n) is the �lter coe�cients for the pth signal

group.

In the Fourier transform method, the frequency com-

ponents are also extracted by

F (j!p) =

NX

n=1

x(n)e
�j!pnT (2)

where fp is the frequency included in the pth signal

group. If power of yp(n) or amplitude of F(j!p) take

the maximum value, then the input signal is classi�ed

into the pth group.

The frequency components can be detected by sup-

pressing other group frequencies, too. The processing

is the same as Eq.(1). However, the transfer function

has zeros on the frequencies included in the pth signal

group.

HFIR2(z) = h0

PY

p=1

(1� 2 cos!pTz
�1

+ z
�2
) (3)

In this method, if power of yp(n) takes the minimum

value, then the input signal is classi�ed into the pth

group.

There are two kinds of �lter structures, that is a

�nite impulse response (FIR) �lter and an in�nite im-

pulse response (IIR) �lter. Among them, we employ

an FIR �lter, because it can simulate an IIR �lter.

The frequency extracting and suppressing �lter meth-

ods are denoted FIR1 and FIR2, respectively in this

paper. Comparison between them will be described in

Sec.5.



2.2. Pattern Matching Methods

Euclidean distance and Maharanobis' generalized dis-
tance (MGD) are employed for the pattern matching
method. These methods calculate the distance between
the templates and the input signals. The Euclidean dis-
tance from the input signal x(n) to the mth template
xpm(n) in the pth group is given by

d(pm) = f
1

N

NX

n=1

(xpm(n)� x(n))2g
1

2 (4)

If

d(p0m) = min
p
fd(pm)g (5)

then x(n) is classi�ed into the p0th group.
For Maharanobis' generalized distance, the distance

from the input signal x(n) to the centroid of pth group
templates is de�ned by

d̂
2

p = (x� �p)
T
C
�1
p (x� �p) (6)

Here, C�1
p is the inverse matrix of the covariance ma-

trix of the pth templates, �p is the centroid vector of the
pth signal group. Thus, the variance of the signal group
distribution is taken into account and this process re-
form the signal group distribution into a sphere. The
same decision rule is used as in the Euclidean distance
methods.

Each template forms a sub-group and the perfor-
mance is highly depends on how well the templates
cover the region in which all signals locate. So, selection
of the templates is a critical problem.

The k-mean clustering is the most popular clus-
tering algorithm by MacQueen[13] and Anderberg[14].
This clustering method selects the best template signal
to classify the signals based on the Euclidean distance.
This method estimates the distribution of the signal in
an N-dimen-sional space as a sphere. That means the
signals are not correlated each other. So, this estima-
tion has some limitation in the signal classi�cation of
interest.

The maximum-likelihood Gaussian classi�er [15] is
another method for classi�cation. This classi�er uses
the maximum-likelihood estimation to decide the �xed
coe�cients which maximize the accuracy. The inner
product of the input signals and the coe�cients are cal-
culated. The inner product will be a large value for
one group and small value for the others. This method
assumes Gaussian distribution. However, distribution
of multi-frequency signals does not always follow this
assumption.

2.3. Spectrum Estimation Method

Maximum entropy method (MEM) [12], which is a spec-
trum estimation method, estimates an AR model of the
given data. From the Wienner-Khinchin's law, the spec-
trum is equal to the Fourier transform of the autocor-
relation of the signal of interest. The power spectrum
P (!) is given by

P (!) =

MX

i=�M

ie
�j!k (7)

Here, i is the autocorrelation sequence of the signal
x(n) with i lag. The power spectrum P (!) is modeled
by

P (!) �
a0��1 +

PM

k=1
ake

�j!k
��2

(8)

a0 and fakg are unknown coe�cients of the prediction-
error �lter. M is the order of the �lter. From Eqs.(7)
and (8),Mth-order �lter coe�cients a0 and fakg are es-
timated so as to maximize the entropy. The frequency
component is detected by �nding the frequencies at
which the spectrum P (!) has peak values. From the
detected frequencies, the input signal can be classi�ed.

3. Signal Detection and Classi�cation

by Multilayer Neural Networks

We use a single hidden layer whose activation function
is monotonically increased and squashed function (sig-
moid function). If we can assume that the hidden unit
outputs can approach to the saturation regions as the
learning converges, then region boundaries are formed
by hyper-planes, whose equations are formulated by the
input-hidden layer connection weights.

Let the input signal is an N-dimensional vector. One
hyper-plane divides the N-dimensional input space into
two regions. When M hidden units are used, there are
M hyper-planes, and the input space can be separated
into 2M sub-regions at maximum. In other words, the
hidden layer outputs are encoded with M bits. Hence,
we have 2M bit patterns.

These sub-regions are further combined at the out-
put layer through the hidden-output layer connection
weights. In this step, set of the hidden layer outputs,
which can be used simultaneously, should include lin-
early separable patterns, because only a single layer re-
mains. Although this limitation is imposed, a variety of
the signal detection regions can be formed at the output
layer. Thus, the MLNNmethod has much higher degree
of freedom of forming the signal detection regions.

4. Comparison of Signal Detection and

Classi�cation

4.1. Conventional Signal ProcessingMethods
When a large number of samples are used to repre-

sent the input signals, highly accurate signal classi�ca-
tion is possible by the conventional methods. Letting
the signal detection accuracy be 100%, all signal vec-
tors locate in the detection regions. For example, in
the case of FIR1 in Sec.III, if the signals can be de-
tected by using only one output sample, the following
inequality may be held.
�����

NX

m=1

x(m)hp0(n�m)

������ max
p6=p0

�����

NX

m=1

x(m)hp(n�m)

�����
(9)

Supposing an appropriate threshold �, this condition
can be replaced by

�����

NX

m=1

x(m)hp0(n�m)

����� > � (10)
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Fig. 1: Signal detection regions of FIR �lter and MLNN.

This means that all the signals belong to the p0
th group

are concentrated in the above region in the N-dimen-

sional space.

An example of the signal detection region given by

Eq.(10) for two-dimensional signals is shown in Fig.1(a).

The shade parts are the signal detection regions.

When the number of the input signal samples is

limited, many outputs samples are needed in the power

computation. In this case, the signal detection region

is formed by

KX

k=1

�����

NX

m=1

x(m)hpk(n�m)

�����

2

> �
0

(11)

This region is wider than that given by Eq.(10). Be-

cause all the inner products included in Eq.(11) are

not required to satisfy Eq.(10). It is enough to sat-

isfy Eq.(11) that some of them have large magnitude.

An example of the extended region given by Eq.(11) is

illustrated as shade parts in Fig.1(b).

In case of the �lter methods, however, sub-regions,

formed by hyper-planes, cannot be freely combined like

the MLNN as described in Sec.III. The regions are unique-

ly determined by the hyper-planes. This is disadvantage

of the conventional signal processing methods.

From this discussion, we can estimate the distri-

bution of the N-dimensional multi-frequency signals.

When the signal have a large number of samples, they

will distribute in some limited region formed by a sin-

gle hyper-plane. However, by limiting the number of

the input signal samples, they spread out of the limited

region. Because, the signals are not exactly orthogo-

nal in this case. The �lter outputs become smaller.

Thus, a wide region is required for detecting the signals.

The signal distributed regions may be very complicated.

This means many hyper-planes will be required in the

�lter method. If computational load is limited to be the

same as the MLNN method, performance of the �lter

methods will be inferior to that of the MLNN method.

Discussions based on simulation will be given in Sec.V.

The same discussion as in the �lter method can be

valid in the pattern matching methods. A template

corresponds to a set of �lter coe�cients. In this case,

however, performance is highly dependent on selection

of a set of templates.

4.2. Multilayer Neural Network Method

Signal detection regions formed by the MLNN method

is investigated. When two hidden units are used, the

input space can divided into four regions as shown in

Fig.1(c). One hidden layer output corresponds to one of

four reions. These regions are further combined at the

output layer. In the MLNN with a single hidden layer,

the hidden layer outputs must be linearly separable in

this case. After taking this condition into account, the

MLNN still has much higher degree of freedom for form-

ing the regions. In Fig.1(c), when the number of signal

groups is two, any combinations of the regions I � IV ,

except for a combination of (I,III) and (II,IV) which is

linearly nonseparable, are possible.

As discussed above, the input signals with a small

number of samples distribute widely and complicatedly.

In this case, the MLNN can be expected to provide high

performance in the signal detection and classi�cation.

On the other hand, the MLNN is trained by su-

pervised learning. Then how well form the region is

strongly dependent on a set of the training signals. There-

fore, the training signals should be carefully selected,

and the number of them should be enough.

5. Simulation Results and Comparisons

5.1.Multilayer Neural Network

A two-layer neural network is taken into account. N

samples of the mth signal xpm(n), belongs to the pth

group, are applied to the input layer. The nth input

unit receives xpm(n). The connection weight from the

nth input to the jth hidden unit is denoted wnj. The

input potential and output of the jth hidden unit are

given by

netj =

NX

n=1

wnjxpm(n) + �j (12)

yj = fH(netj) (13)

Letting the connection weight from the jth hidden

unit to the kth output unit be wjk, the input potential

and output of the kth output unit are given by

netk =

JX

j=1

wjkyj + �k (14)

yk = fO(netk) (15)

The activation function of the hidden and output layers

are the sigmoid function.

The number of output units is equal to that of the

signal groups, that is k = 1 � P in Eqs.(14) and (15).

The neural network is trained so that a single output

unit responds to one of the signal groups.



5.2. Multi-frequency Signal

The following multi-frequency signals are used in the
simulation.

xpm(n) =

RX

r=1

Amr sin(!prnT + �mr) (16)

Here, !pr = 2�fpr;m = 1 � M;n = 1 � N . T is a
sampling period. In the pth group, the signals have the
same frequencies.

Fp = [fp1; fp2; . . . ; fpR] (17)

Amplitude Amr and phase �mr are di�erent for each
frequency in the sample group. They are generated
as random numbers, uniformly distributed in following
ranges.

0 < Amr � 1; 0 � �mr < 2� (18)

5.3. Training and Classi�cation of MLNN

Error back propagation(BP) algorithm [1] is used for
training. The signals are divided into the training sig-
nals and the test signals. Noise free and noisy signals
are used for both training and testing. Additive noise,
uniformly distributed in [-0.5,0.5], is employed. After
training, test signals are applied to the MLNN to inves-
tigate its generalization.

The number of frequencies included in each group
is R=3, and that of the signal groups is P=2. The
number of samples is N=10 or N=20. Group frequen-
cies in group 1( #1 ) are 1, 2 and 3 Hz, and in group
2( #2 ) are 1.5, 2.5 and 3.5 Hz, respectively. A sam-
pling frequency is 10Hz. 200 training signals and 1800
test signals in each group are used. Here, number of
the training signals are determined by experience with
which the generalization performance can be guaran-
teed.

5.4. Signal Classi�cation

The number of parameters are listed in Table 1. One in-
ner product or one sample power calculation is counted
as one computation. After the learning converges, the
hidden unit outputs approach to '1' or '0'. So, the sig-
moid function can be replaced by a threshold function
in the test signal classi�cation. Therefore, the calcula-
tion of the sigmoid function is omitted from the compu-
tation. The parameters for each method is as follows;
MLNN : the number of hidden units, Euclidean distance
and MGD : the number of templates, Fourier transform
and MEM : the number of frequency components, FIR1
and FIR2 : the number of output samples.

Figure 2 shows an example of an impulse response of
1000 lengths used in FIR1. The band width is 0.02Hz.
The output signal of FIR1 is calculated by Eq.(1) in the
steady state. Thus, calculating a single output requires
N computations. This means only N samples of the
1000 length coe�cients are used.

FIR2 does not require the output power. A single
output signal in the steady state can be used to detect
the frequency component. Order of the transfer func-
tion is 9th and 19th-order for N=10 and 20, respectively.

Accuracy of signal classi�cation in percentage for
the test signals by all the methods previously described

Table 1: Number of parameter of NN and conventional

methods.

limited not limited

Methods N=10 N=20 N=10 N=20

MLNN 3 3 40 40

FIR1 2 2 10 10

FIR2 1 1 1 1

Fourier 1 1 3 3

Euclid 2 2 200 200

MGD 2 2 200 200

MEM 1 2 3 3

N : number of samples
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Fig. 2: Amplitude repsonse of FIR �lter which designed to

extract group 1 signals.

are listed in Table 2. In this table, \computation lim-
ited" means computational load required in the con-
ventional methods is limited to be the same as in the
MLNN method. In this case, the MLNN method per-
forms well. The accuracy for N=10, noise free and noisy
signal are 97.6% and 85.4%, respectively. FIR2 shows
better accuracy than the MLNN with noise free signals,
however it decreases the accuracy for noisy signals to
50.3%. Because FIR2 cannot suppress the noise spec-
trum. The accuracy of the rest methods are lower than
the MLNN.

In the conventional methods, the accuracy can be
improved by increasing computational load. In Table
2, \computation not limited" means the conventional
methods can use computations so as to provide the
highest accuracy. The valley shape activation function
[8] is used instead of the sigmoid function in the hidden
layer of the MLNN in this case. For 10 samples, MLNN
and FIR1 show the best accuracy among all methods.
For 20 samples, MLNN shows good accuracy which is
the same as other methods. This means the MLNN can
provide good performance in the multi-frequency signal
classi�cation in all cases.

Figure 3 shows the accuracy of the signal classi�-
cation by the MLNN and the conventional methods.
The horizontal axis means the number of hidden units,
which equivalently indicates computational complexity.
The noisy signals are used. From these �gures, the
MLNN performs better than conventional methods for
any computational requirements.

Robustness of the MLNN for noise level changes is
further investigated. The MLNN, which is trained us-
ing noisy 20 signal samples with �0.5 additive noise,
provides 91.7% accuracy for �0.2 additive noise, and
91.3% accuracy for the noise free signals. The number
of the training signals are increased from 200 to 400 in



Table 2: Accuracy of signal classi�cation in percentage.

Methods Computation limited Computation not limited
N=10 N=20 N=10 N=20

NFS NS NFS NS NFS NS NFS NS

MLNN 97.6 85.4 97.4 90.6 100 90.6 100 99.3

FIR1 4.7 3.7 100 87.5 100 90.5 100 99.8
FIR2 100 50.3 100 51.3 { { { {
Fourier 56.1 53.6 77.9 76.7 70.6 65.7 100 94.8
Euclid 49.6 52.1 59.4 62.0 86.0 79.5 100 99.5
MGD 48.6 48.8 50.8 48.6 100 90.2 100 99.7

MEM 60.8 56.8 87.7 87.3 62.9 63.7 97.3 95.4

N : Number of samples, NFS : Noise Free Signal, NS Noisy Signal

this case. Thus, the robustness can be con�rmed.
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Fig. 3: Accuracy of theMLNN and the conventionalmethods

for (a)10 samples and (b)20 samples noisy signal.

5.5. Signal Detection Regions by MLNN

The signal detection regions formed by the MLNN are

investigated based on the hidden layer outputs and the
connections from the hidden layer to the output layer.

10 samples noisy signals are used.

Figure 4 shows input-output distributions of the

hidden units. In this �gure, (a,b), (c,d) and (e,f) corre-

spond to the 1st, 2nd and 3rd hidden units, and (a,c,d),

(b,d,f) correspond to #1, #2 signal groups, respec-

tively. From these �gures, there are two types of distri-

butions, concentrated and spread. For example, Fig.4(b)

shows the 1st hidden unit inputs are concentrated for

#2 signals. Hence, the 1st hidden unit is used for de-
tecting #2 signals. The same situation occurs in the

2nd and 3rd hidden unit as shown in Fig.4(d) and (e),

respectively. From these distributions, however, we can
not estimate the combination of the hidden unit out-

puts.

The connection weights from the hidden layer to
the 1st and the 2nd output units, which respond to

the #1 and #2 signal group, respectively, are listed in

Table 3. The connection weights from 1st, 2nd, 3rd hid-
den units and the bias unit to the 1st output unit are

-18.95, 18.27, 11.63 and -2.0, respectively. The connec-

tion weights to the 2nd output unit have the opposite
polarity to those of the 1st one.
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Fig. 4: Input-output distribution of hidden units. (a), (c)

and (e) are for #1, and (b), (d) and (f) are for #2 signals,

respectively.

Table 3: Connection weights from hidden layer to output

layer.

Output

Hidden 1st 2nd

1st -18.95 18.95

2nd 18.27 -18.27
3rd 11.63 -11.63
Bias -2.0 2.0

Based on these connections, and in order to activate
the 2nd output unit, the following pattern is permitted,

that is (Hidden units : 1st, 2nd, 3rd) = (H, L, L), (H,

H, L), (H, L, H), where H and L mean 'High level' and
'Low level', respectively. On the other hand, there are 4

patterns to activate the 1st output unit, (Hidden units

: 1st, 2nd, 3rd) = (L, H, H), (L, H, L), (H, H, H) and

(L, L, H).

Table 4 shows the combination of the hidden unit

outputs for #1 and #2 signals. For #1, there are

two combinations, (Hidden units : 1st, 2nd, 3rd) =

(H, H, H), (L, L, H). For #2, three combinations, that



is (Hidden units : 1st, 2nd, 3rd) = (H, H, L), (H, L,
H), (H, L, L) are formed. As expected from the the-

oretical discussion, the MLNN e�ectively classi�ed the

multi-frequency signals using higher degree of freedom
of forming the signal detection region.

Table 4: Hidden unit output distribution.

Group 1 (#1) Group 2 (#2)
1st 2nd 3rd Number 1st 2nd 3rd Number
H H H 112 H H H 0
H H L 0 H H L 52
H L H 0 H L H 109
H L L 0 H L L 39
L H H 0 L H H 0
L H L 0 L H L 0
L L H 88 L L H 0
L L L 0 L L L 0
Number : number of hidden units
1st sim 3rd : hidden unit output

6. Dial Tone Recognition

Dial tone recognition is used in the push button tele-

phone to generate the signals correspond to the nu-

merical and function buttons. This is an example of
the multi-frequency signal classi�cation. Two groups of

high and low frequencies are used. Table 5 shows the

combination of frequencies.
The amplitude range and phase are distributed in

the same ranges given by Eq.(18). The sampling fre-

quency is 4Hz. The number of samples is 10 or 20.

Table 5: Relation between combination of frequencies and

dial tones #1 � #16.

1.209 1.366 1.477 1.633
0.697 #1 #2 #3 #4
0.770 #5 #6 #7 #8
0.852 #9 #10 #11 #12
0.941 #13 #14 #15 #16

6.1. Classi�cation by MLNN

Table 6 shows classi�cation accuracy for the test sig-

nals. 50 hidden units, whose activation function is a

sigmoid function, are used. In the both cases, the accu-

racy is very high. From the results, This kinds of com-

plex problem can be solved by the MLNN with small
computation.

Table 6: Accuracy of NN for dial tone recognition using

MLNN method.

Signal Sample Accuracy[%]

10 90.6
20 95.7

6.2. Classi�cation by FIR1

As the conventional methods, FIR1 is used to classify

the dial tone signals. Eight kinds of FIR �lters are
designed to extract each frequency component. A single

FIR �lter extracts only one frequency component. The

power of the FIR1 outputs are calculated, and are added
to extract one of 16 combinations.

Table 7 shows accuracy of dial tone recognition.

\output samples" means the number of the output sam-
ples used in the power calculation. 200 output samples

is su�cient to provide the highest accuracy in the FIR1

method. The accuracies of the FIR1 are lower than
those of the MLNN.

Table 7: Accuracy of dial tone recognition using FIR1

method.

Signal Sample Output Sample Accuracy[%]

10 14 23.3
200 41.2

20 10 79.4
200 83.6

7. Conclusion

Classi�cation performance of the signal which carring

information as frequencies, using the MLNN and the

conventional signal processing methods has been com-

pared under the limited observation period and com-

putational load. The comparison has been carried out

based on degree of freedom to form the signal detection

regions in the N-dimensional signal space. The MLNN

method has higher degree of freedom, and can provide

more exible performance for detecting the frequency

components than the conventional methods. The result

has been supported through the simulations of multi-

frequency signal classi�cation and the dial tone receiver.
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