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ABSTRACT

In order to analyze the topological structure of the data space using Kohonen's self-

organizing feature map (SOFM), a criterion is discussed. The Euclidian distance between

the reference vector and the data, the number of the reference vectors and the topology pre-

serving measure are taken into account, and are combined in a uni�ed criterion. Through

computer simulation, it is con�rmed that goodness of the di�erent reference topologies, that is

dimensions, can be clearly discriminated regardless the parameters. Thus, the uni�ed criterion

makes it possible to analyze the essential data space topology.

1. Introduction

The self-organizing feature map (SOFM) proposed

by Kohonen [1] is useful to map the environment

features into the reference vector (RV) space, in

which they are arranged in some order. The RV

space has its own topology, that is structural con-

straint. This topology tends to be preserved dur-

ing the SOFM learning. If this topology matches

to that of the feature space, the features can be

mapped onto the suitable RVs, at the same time,

they are arranged in the plausible order.

On the other hand, the N-dimensional features,

simply called "data" in the following, observed in

some environment, are not usually distributed in a

full N-dimensional space, rather they are partially

distributed in limited sub-spaces. In data analysis,

it will be important to analyze the essential dimen-

sion and the shape of the region, where the data

are distributed.

In this paper, we discuss analysis of topological

structure of the data space using Kohonen's SOFM.

Especially, the essential dimension of the data dis-

tribution region is taken into account. For this pur-

pose, criteria for evaluating the SOFM results are

investigated.

A �rst problem is what is a correct topology for

the data distribution. For example, N-dimensional

data, distributed on a 2-dimensional plane or along

a thin tube, has a 2-dimensional topology or a 1-

dimensional topology. The next problem is what

kinds of measures can be applied to evaluating the

SOFM results. For this purpose, we employ the

mean-square distance, the topology preservationmea-

sures [2],[3] and the number of the RVs. Their e�-

ciency and relations are discussed.

2. Self-Organizing Feature Map

The SOFM, taken into account in this paper, is the

original one proposed by Kohonen [1]. Let x(i); i =

1; � � � ; NX ; and r(j); j = 1; � � � ; NR, be N-dimen-

sional input vectors and M-dimensional reference

vectors (RVs), respectively. Usually, M � N and

NR � NX . The initial location of r(i) is set to

be random. In the SOFM procedure, x(i) is given,

and the nearest r(j0) is selected as the winner. r(j0)

and its neighbors are shifted toward the input x(i).

r(j0; n) = min
j
f!Br(j; n) � x(i)!B2g (1)

r(j; n) = r(j; n) + �(n)(x(i)� r(j; n)) (2)

for j 2 NB(j0; n)

where!B�!Bis an l2-norm, �(n) is a learning rate, n

is an iteration number, and NB(j0; n) indicates the

neighbor of r(j0) at the nth-iteration. �(n) and

NB(j0; n) are gradually decreased as the SOFM

makes progress.

3. Performance Measure for Optimun

Topology

Goodness of the SOFM result is evaluated based

on the followings. First, the distance between the

input data and the selected RVs, that is the win-

ner is necessary. This means how well the region,

where the input data are distributed, is covered by

the RVs. Even though the mean-square distance is

small, the topology of the RVs is not always match

to that of the data distribution. If the resulting

topology is twisted from the original one, it cannot

exactly represent that of the data distribution. The



number of the RVs is also important. When it is

small, the given topology can be expected to be the

optimum one. Finally, relations among the above

three criteria is also important.

3.1. Euclidian Distance

The RVs are used to represent the input vectors.

Usually, the number of the RVs is less than that of

the input data, NX � NR. Thus, one RV represents

a plural number of the input data. This representa-

tion is usually evaluated by the Euclidian distance

between the winner RV and the corresponding in-

put data. So, we employ the root-mean-square er-

ror given by

RMSE =
1

NX

X
jjr(j)� x(i)jj (3)

3.2. Topology Preservation Measure

First, we must de�ne goodness of the resulting topol-

ogy. Since the topologies are categorized based

on their dimension, the topology preservation mea-

sure may be suitable for this purpose. For ex-

ample, in the case of the 1-dimensional topology,

it may be preferred that the RVs are locally ar-

ranged on a straight line and are located at equally

spaced points. In the same manner, in the case of 2-

dimensional topology, it is desired that the RVs are

located at the square lattice. These structures can

be de�ned as follows: The receptive �eld covered

by r(j), denoted R(j), borders on R(j0), where j0

indicates the next neighbors along the given topol-

ogy. Several kinds of measures based on the above

criterion have been proposed [2],[3]. One of them is

the topographic function [2], de�ned by

f (j0; k) = Numfjjtd[j0 � j] > k;R(j0) \R(j) 6= 0g
(4)

�(k) =
X

j

f(j; k) (5)

f (j0; k) means the number of r(j), whose receptive

�eld R(j) borders on R(j0), and the topological dis-

tance td[j0 � j] between j0 and j is greater than k.

td[�] means the distance along the topology of the

references. k is selected so as to detect the twisted

topology. The large �(k) indicates that its topol-

ogy is highly deviated from the optimum one, and

the small �(k) means its topology is close to the

optimum one. Therefore, the topology with a small

�(k) can represent that of the data sub-space.

3.3. Number of Reference Vectors

The number of RVs is also an important factor,

which can be used to evaluate goodness of the topol-

ogy. If the given topology is well suited to the input

data distribution, then it can be expected that the

number of the RVs is small.

4. Combination of Three Measures

4.1. Relations among Three Measures

The next problem is how to combine the above

measures, the root-mean-square error (RMSE), the

topology preserving measure (TPM) and the num-

ber of the RVs (NRV). For this purpose, relation

among them is �rst discussed.

In this paper, it is assumed that the input data

are uniformly distributed in some region, which takes

an arbitrary shape. Furthermore, we assume the

use of the adaptive growing topology method [4]

. In this method, the RVs, which are rarely used,

are deleted. Thus, the shape is changed from the

original one by deleting the unnecessary RVs while

maintaining its dimension. In this case, the topol-

ogy preserving measure becomes very important. If

the topology is perfectly preserved, namely �(k) =

0, the RMSE may be uniquely determined by the

NRV. The topology, with which the RMSE takes

the minimum under the same NRV, or the NRV

takes the minimum under the same RMSE, can rep-

resent the minimum structure of the data distribu-

tion region. That is what we want to extract.

4.2. Uni�ed Criterion for Data Topology Anal-

ysis

Based on the above discussions, we combine the

above three measures to generate a Data-Topology-

Measure(DTM).

DTM(N;M;NX;NR) = F(RMSE;NRV;TPM) (6)

In this paper, we employ a linear combination given

by

DTM(N;M;NX;NR) = �RMSE+ �NRV+TPM (7)

�, � and  are scaling factors, which will be de-

termined so that three criteria perform almost the

same contribution.

In searching the optimum topology, it is required

that the DTM of the optimum topology (M-dimen-

sion) always takes the minimum value regardless

the other parameters, N;NX ; NR. This property

will be investigated in the next section through com-

puter simulation.

5. Simulation Results and Discussions

5.1. Simulation Parameters

The input data are basically 3-dimensional vectors

with the coordinate (x; y; z). The data are dis-

tributed in a box, whose size is dx � dy � dz. In

the simulation, dx and dy are �xed to unity, and dz
takes several values, from 0 to 1. Thus the input

data are distributed in a cube for dz = 1, and on

a plane, that is a 2-dimensional space, for dz = 0.



The number of the data is NX = 1000. 1-, 2- and

3-dimensional topologies are taken into account for

the RVs. 2- and 3-dimensional topologies have a

square and a cube, respectively. All RVs are used

in the SOFM procedure, that is no RV was elimi-

nated.

5.2. Simulation Results

Figure 1 shows examples of the data, which are dis-

tributed on a 2-dimensional space, and RV distri-

bution obtained by the SOFM using 1-, 2- and 3-

dimensional topologies. Figure 2 shows examples of

the RMSE. The learning almost converged around

1000iterations (epoches). Figure 3 (a) shows the

RMSE in terms of NRV. The DTM given by Eq.(7)

in terms of NRV is shown in Figs.3 (b) and 3 (c),

using (�;�; ) = (1;2:5 � 10�4;0) and (1;2:5 �

10�4; 1), respectively. These scaling factors are se-

lected so that three terms in Eq.(7) have almost the

same level. In calculating TPM, k is set to 1.

Furthermore, the simulations were carried out

for di�erent dz, that is dz = 0:3; 0:5;0:8. Figure 4

shows the data distributions and the corresponding

reference vector distributions. Figure 5 shows the

DTM in terms of NRV.

5.3. Discussions

Figure 3 (a) shows the RMSE gradually decrease

as the NRV increase. If we have some limitation

on the network size, that is NRV, it is not good

to increase the NRV. It may have some optimum

value. The data topology measure DTM, shown in

Fig. 3 (b), includes both the RMSE and the NRV,

and have the minimum point. If we can determine

the optimum scaling factor for some practical use,

it is possible to �nd the optimum NRV.

In this simulation, the data are distributed on

the 2-dimensional plane. Therefore, the data topol-

ogy analysis should be 2-dimension. In Figs.3 (a)

and 3 (b), however, the RMSE and the DTM with-

out the TPM of the 2-dimension are not always the

minimum among three dimensions. By adding the

TPM further, it is possible to distinguish them as

shown in Fig. 3 (c). The DTM of the 2-dimension

can take the minimum value regardless the NRV.

This means the combination of three measures is

important in order to analyze the essential topol-

ogy of the data distributed space.

In the next simulations, the region of the data

distribution approaches to a cube. When dz = 0:3,

the DTM for the 2- and 3-dimensional topologies

are almost the same. However as dz is increased

more, the DTM for the 3-dimensional topology is

decreased compared with the other. Thus, the data

distribution with dz, being larger than 0.5, can be

analyzed to have a 3-dimensional structure.

6. Conclusion

In order to analyze the topological structure of the

data space using Kohonen's SOFM, a criterion has

been discussed in this paper. The root-mean-square

error, the number of the reference vectors and the

topology preserving measure are taken into account,

and are combined in a uni�ed criterion. Through

computer simulation, it has been con�rmed that

di�erence of goodness of the reference topology, that

is dimension, can be made clear regardless the pa-

rameters. Thus, by using the uni�ed criterion, it is

possible to analyze the essential data space topol-

ogy.
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Fig. 1: Distribution of data(�) and reference

vectors(�).
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Fig. 2: Learning curves of RMSE.
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(b) Data topology measure (DTM) in terms of the number of

reference vectors(NRV), (�, �, ) = (1,2.5�10�4,0).
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(a) dz = 0:3
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(b) dz = 0:5
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Fig. 5: Data topology measure (DTM) in terms of

the number of reference vectors(NRV)


