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ABSTRACT

A recurrent neural network(RNN), in which each unit has serial delay elements, is proposed

for memorizing limit cycles(LCs). This network is called DRNN in this paper. An LC consists

of several basic patterns. The hysteresis information of LCs, realized on the connections from

the delay elements to the units, is very e�cient in the following reasons. First, the same

basic patterns can be shared by di�erent LCs. This make it possible to drastically increase

the number of LCs, even though using a small number of the basic patterns. Second, noise

performance, that is, probability of recalling the exact LC starting from the noisy LC, can

be improved. The hysteresis information consists of two components, the order of the basic

patterns included in an LC, and the cross-correlation among all the basic patterns. The

former is highly dependent on the number of LCs, and the latter the number of all the basic

patterns. In order to achieve good noise performance, a small number of the basic patterns

is preferred. These properties of the DRNN are theoretically analized and con�rmed through

computer simulations. It is also con�rmed that the DRNN is superior to the RNN without

delay elements for memorizing LCs.

1. Introduction

An associative memory is one of hopeful applica-

tions of arti�cial neural networks(NNs). Memo-

rizing patterns to equilibrium points of a recur-

rent neural network (RNN) is one approach. Re-

searches on algorithms of learning and recall which

improve memory capacity and noise performance

have been carried out[1],[2],[3]. Limit cycle(LC)

memories have been also studied [4]{[8]. The RNNs

have been mainly used, in which patterns, compo-

nents of an LC, are stored at equilibrium points.

Furthermore, dynamical operation of such RNNs

has been investigated, taking delay e�ects into ac-

count[9]. However, in existing approaches, hystere-

sis information of LCs have not been well used in a

recall process.

In this paper, an RNN, in which units have se-

rial delay elements in order to take the hysteresis

information of an LC, is proposed. This network is

called DRNN in this paper. The DRNN operates

as a discrete time system. Patterns included in LCs

can be used as hysteresises information through

feedback weights from the delay elements.

First, we show capability of the DRNN to mem-

orize many LCs which include common basic pat-

terns. Next, basic properties of the DRNN such

as memory capacity and recall performance from

noisy patterns are investigated through theoretical

analysis and computer simulation. The e�ect of the

hysteresis information is investigated. Comparisons

between the RNN memory with equilibrium mem-

ory points and the DRNN are discussed. Finally,

design methodology for good noise performance is

discussed.

2. RNN with Serial Delay Elements

(DRNN)

2.1. Structure of DRNN

Structure of the DRNN is shown in Fig.1. The num-

ber of the delay elements is three. fui0g, fui1g,

fui2g, fui3g, i = 1 � N , form four basic patterns.

A black square indicates a connection weight wijk

from the kth delay element of the ith unit to the

j th unit, where k=0 means the ith unit itself. It is

assumed wiik = 0.

2.2. Network Equations

Input and output relations of the units and the de-

lay elements are given by



vj(n) =

NX
i=1

L�1X
k=0

wijkuik(n) (1)

uj0(n+ 1) =

8<
:

1; vj(n) � T

uj;L�1(n); jvj(n)j < T

0; vj(n) � �T

(2)

uj;k+1(n + 1) = ujk(n) k = 0; � � �; L� 2 (3)

N is the number of the units. L-1 is the number

of the delay elements. T is a hysteresis threshold

level.
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Fig. 1: Structure of the DRNN

3. Limit Cycles

In this paper, we impose the following conditions

on the basic patterns which are elements of LCs:

Fifty percent of the units, randomly selected, take

the state "1", and the other units "0". An example

of an LC, whose period is 4, is shown in Fig.2.

Pattern A Pattern B Pattern C Pattern D

Fig. 2: Example of LC. (period is 4)

4. Improved Error Correction Learn-

ing

The improved error correction learning algorithm

is employed for adjusting connection weights of the

DRNN. Hysteresis threshold �T and hysteresis mar-

gin dT were introduced in order to improve recall

performance from noisy patterns and stabilize a

learning process, respectively[1],[3]. This learning

algorithm is modi�ed for the DRNN as shown in

the following.

I. Initialize connection weights.

wijk(0)=0 (1� i; j�N;0�k�L�1) (4)

II. Calculate network state.

The weighted sum input of all units are cal-

culated after setting the network state to a

certain phase of one of LCs to be memorized.

Letting pik(n) be the state, that is the out-

put, of the k th delay element of the ith unit

for the given basic pattern, the weighted sum

input vj(n)is given by

uik(n) = pik(n); k = 0; � � �; L� 1 (5)

vj(n) =

NX
i=1

L�1X
k=0

wijkuik(n) (6)

III. Calculate correction of weights.

When pj0(n) = 1,

if vj(n) � T , then

�wijk(n) = 0 (7)

if vj(n) < T , then

�wijk(n) =
T + dT � vj(n)PL�1

k=0 Nk � 1
pik(n) (8)

When pj0(n) = 0,

if vj(n) � �T , then

�wijk(n) = 0 (9)

if vj(n) > �T , then

�wijk(n) =
�T � dT � vj(n)PL�1

k=0 Nk

pik(n) (10)

dT is a margin for the threshold level, which

can avoid unstable behavior in an error cor-

rection learning process and can accelerate

the learning speed[1],[3].

IV. Update connection weights.

Using �wijk(n) calculated in III, all connec-

tion weights are adjusted at the same time

by

wijk(n+ 1) = wijk(n) + �wijk(n) (11)



V. Shift LC phase.

Phase of LC in II is shifted by one step.

VI. II-V are repeated until �wijk(n) = 0 for all

phases of the LC.

VII. II-VI are executed for the next LC.

VIII. II-VII are repeated until �wijk(n)=0 for all

LCs to be memorized.

After convergence, the network always satis�es

the followings.

if pj0 = 1 then

vj � T (12)

if pj0 = 0 then

vj � �T (13)

5. Recalling from Incomplete Patterns

In order to recall the memorized LCs, the method

proposed in [1],[3], which uses variable hysteresis

threshold, is applied. The original one is modi�ed

to recall the LCs instead of the patterns stored at

the equilibrium point. The algorithm for recalling

the LCs from incomplete initial patterns is shown

in the following.

I. The initial LC patterns are set to all units

and their delay elements.

II. The weighted sum input vj(n) of all units are

calculated by Eq.(1).

III. A variable hysteresis threshold T (n) is cho-

sen to be the maximum value of jvj(n)j of
the unit which satis�es either (vj(n) > 0 and

uj;L�1(n) = 0) or (vj(n) < 0 and uj;L�1(n) =

1). Hence, the output uj0(n + 1) of the unit,

which satis�es the above and its jvj(n)j is
maximum, is replaced by the reverse of the

last delay element output of the previous time

step, denoted by uj;L�1(n), as follows:

uj0(n+ 1) = uj;L�1(n) (14)

The bar indicates reverse operation from 1 to

0, and vice versa. The other units follow the

following state transition. Namely, the out-

put of the j th unit is changed to the output

of the last delay element at one time step be-

fore.

uj0(n+ 1) = uj;L�1(n) (15)

IV. State of delay elements are shifted by one

step.

uj;k+1(n+ 1) = ujk(n) ; k = 0;1; � � �;L � 2

(16)

V. II-IV are repeated until the network settles

down to some stable state, which may include

the memorized LCs and spurious LCs.

6. Computer Simulation and Discus-

sions

6.1. Generation of LCs

In the following simulation, the number of units is

16, the number of delay elements connected to a

unit is 3, and � = dT=T = 0:2. When the number

of all basic patterns is m, and a period of LCs is l ,

the full number of LCs is given by

mCl � (l � 1)! =
m!

(m� l)!� l
(17)

A set of LCs with m=8 and l=4 include the fol-

lowing LCs, which have the common basic pattern

B.
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Fig. 3: Examples of LC, which include a common pattern B.

6.2. Capability of Learning a Set of LCs

Capability of learning a set of LCs is investigated.

Especially, a combination of periods of the LCs in

the same set is taken into account. Table 1 shows

simulation results. In this table, "l=4,3,2,1" means

a set of LCs includes period of 4,3,2,1. "X" means

the learning didn't converge within 1000 iterations.

The number in () means the number of LCs used

in this learning.

Table 1: The number of iterations in learning a set

of LCs, in which several periods are combined

m 4 6 8 10
l=4,3,2,1 25(4) X(24) X(151) X(568) X(1555)
l=4,3 40(4) X(14) X(130) X(532) X(1500)
l=4,2,1 - 7(16) 4(111) 3(456) 2(1315)
l=4 - 2(6) 28(90) 13(429) 7(1260)

From Table 1, there are two kinds of conver-

gence properties. One of them includes l=4,3,2,1

and l=4,3, and the other l=4,2,1 and l=4. In the

former case, called "Case 1" here, the learning didn't

converge except for the number of LCs is 4. On the

other hand, in the latter case, called "Case 2", the



learning always converged with a small number of

iterations.

A main di�erence between them is relations a-

mong the periods. In Case 1, l=3 is not a factor of

the maximum period l=4. In this case, directions of

adjusting connection weights for LCs with periods

of 4 and 3 con
ict with each other. Thus, by in-

creasing the number of LCs, this con
iction is also

increased, and �nally the learning becomes very dif-

�cult. This phenomenon will be further explained

in the following.

In Case 2, directions of learning for all LCs are

the same. Because, the smaller periods than the

maximum one can be equivalently the same as the

maximum. For instance, an LC with a period of 2,

!(A!B)!(A!B)!, can be regarded as an LC

with a period of 4,! (A!B !A! B)! . For

this reason, the learning can converge toward the

same direction for all LCs, resulting in stable and

fast convergence.

In Case 2, the following relation is always valid.

ui0(n+ 1) = ui3(n) (18)

Therefore, the role of connection weights wijk is di-

vided into the following two categories.

wij3 : Connection weights concerned in auto-asso-

ciation.

wij0;wij1; wij2 : Connection weights concerned in

hysteresis of an LC and cross-correlation among the

basic patterns.

In Case 1, however, Eq.(18) cannot be always

held. Hence, allwijk are concerned in the hysteresis

and the cross-correlation.

In order to con�rm the above analysis, variances

and averages of connection weights are investigated,

and are shown in Table 2.

In Case 2, it is possible to distinguish a role of

wij3 from that of the others as described above.

The LC association follows the auto-association by

wij3. The other weights, however, hold important

information, that is the hysteresis and the cross-

correlation information. Their signi�cant e�ects on

the LC association will be shown in the later sec-

tion.

In Case 1, however, the above distinctive role

cannot be recognized. Especially, the auto-association

by wij3 may be very weak. For example, let con-

sider LCs with periods of 4 and 3, such as! (A!

B!C!D)!and!(A!B!C)! , respectively.

The following associations through wij3 occur: Pe-

riod of 4;(A! A), (B ! B), (C ! C), (D!D),

and period of 3; (A!B), (B!C), (C!A). Thus,

di�erent patterns should be recalled from the same

pattern. This is a reason whywij3 cannot be grown,

at the same time, the other weights cannot extract

the necessary information, as shown in Case 2.

6.3. Recall Performance from Noisy Patterns

6.3.1. Uniformly Distributed Noise

Association rates are evaluated through computer

simulation when the initial 4 patterns ui0(0), ui1(0),

ui2(0), ui3(0) are changed from the memorized pat-

terns by adding noises. Adding noise to a unit re-

verses its state. The combination of the periods of

the LCs follows Case 1. The relation between the

number of LCs, the number of noises and associa-

tion rates are shown in Fig.4. The number of all

basic patterns is �xed to 12. In this �gure, k/16

means a single pattern includes k noises.
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Fig. 4: Relation between the number of LCs, the number

of noises and association rates. Noises are uniformly dis-

tributed.

Figure 4 shows the following typical properties.

(1)When the number of LCs is �xed, the associa-

tion rate is inversely proportional to the amount of

noises.

(2)When the amount of noises is �xed, the associ-

ation rate is inversely proportional to the number

of LCs until around 100. After that it is almost

saturated.

The latter property (2) can be explained as fol-

lows: In the �rst interval, the hysteresis informa-

tion represented by wijk; k = 0 � L � 2, except for

wij;L�1, may be weakened by increasing the num-

ber of LCs. For example, let consider two LCs,

! (A!B!C!D)! and! (A!B!C!E)!.

In this case, the hysteresis information help to re-

call both D and E from the same pattern sequence

! (A ! B ! C) !. The association of di�er-

ent patterns from the same patterns cannot grow

the connection weights wij0 � wij;L�2. However,

this property does not continue until the maximum

number of LCs. The association rate saturates after

around 100 LCs. This means another information

may be extracted by these weights. That is, de-

terministic information come from a small number

of the basic patterns compared with that of LCs.

Probability of taking the state "1" or "0" is not al-



Table 2: Variances and averages of connection weights

periods 4,3,2,1 4,3 4,2,1 4

m 4 4 10 10

the number of LCs 4 4 1315 1260

var. ave. var. ave. var. ave. var. ave.

wij3 369 -1.19 697 -2.32 4290 -11.7 4733 -13.7

wij2 234 0.06 151 -0.80 17 3.92 54 4.40

wij1 203 0.16 387 1.98 14 3.32 51 4.39

wij0 449 1.83 1077 2.87 21 4.10 57 4.51

ways �fty percent. Some units may have high prob-

ability for either "1" or "0". This deviation of the

unit states from the uniform distribution can help

the LC association. This e�ect can be regarded as

cross-correlation among the basic patterns. E�ects

of the hysteresis information will be further inves-

tigated in Sec.6.4.

6.3.2. Non-uniformly Distributed Noise

The number of noises is �xed to 4 in all cases. The

noises are distributed non-uniformly. Simulation

results are shown in Fig.5. For example, the noise

pattern (0,0,1,3) means that ui0(0) and ui1(0) do

not include any noise, while ui2(0) and ui3(0) con-

tain one noise and three noises, respectively.
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Fig. 5: Relation between the number of LCs, the number

of noises and association rates. Noises are non-uniformly

distributed.

Figure 5 leads to the followings:

(1) When the total amount of noises included in

initial patterns is �xed, the larger the deviation to

a speci�c pattern is, the lower association rates is.

(2) Even when the noise distribution is concentrated

to a speci�c pattern, association rates become al-

most constant after about 100 LCs.

(3)When noises included in initial patterns are 0,0,0,4

and the number of LCs is greater than about 100,

the association rates are 32%.

6.4. E�ects of Hysteresis Information

Association rates are evaluated through computer

simulation when the hysteresis information repre-

sented by wijk; k = 0 � L�2, except for wij;L�1 are

reduced after convergence. The relation between

the reduction rates, the number of noises and asso-

ciation rates when the number of LCs is 2400 are

shown in Fig.6.
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Fig. 6: Relation between the reduction rates, the number of

noises and association rates.

As discribed in Sec.6.3, the hysteresis informa-

tion represented by wijk; k = 0 � L � 2, except for

wij;L�1, is weakened by increasing the number of

LCs. In fact, the variances of wijk; k = 0 � L � 2

are about 1/100 of the variance of wij;L�1 when the

number of LCs is large. But Fig.6 shows that the

hysteresis information represented by wijk; k = 0 �

L� 2 plays an important role.

Next, e�ect of the cross-correlation among all

the basic patterns is investigated. The relation be-

tween the number of basic patterns, the number of

noises and association rates when the number of

LCs is 420, which is the maximum when the num-

ber of basic patterns is 8 as shown in Eq.(17), are

shown in Table 3.

This table shows that when the numbers of LCs

are the same, the smaller the number of basic pat-

terns is, the higher the association rates is. Because

the cross-correlation information may be weakened

by increasing the number of the basic patterns, which



Table 3: The relation between the number of basic

patterns, the number of noises and association rates

The number of basic patterns 12 8
0/16 noise 100 100
1/16 noise 85 100
2/16 noise 43 84
3/16 noise 9 44
4/16 noise 3 13

are generated randomly. So generally speaking, when

DRNN is used as an associative memory, the num-

ber of basic patterns should be selected as small as

possible.

6.5. Comparison between the RNN and the

DRNN

E�ciency of wijk(k = 0 � 2) is evaluated in this

section. If wijk(k = 0 � 2) don't e�ect at all, prop-

erties of the DRNN must be equivalent to those of

independent 4 RNNs, in which no delay element

is included, and patterns are stored at equilibrium

points. Simulation results concerning the noise per-

formance under the following conditions are shown

in Table 4.

Table 4: Recall performance of RNN associative

memory with hysteresis threshold

Noises 0/16 1/16 2/16 3/16 4/16
Association rates[%] 100 95 79 34 20

In the case of association by the DRNN, when

all basic patterns of an LC of interest are associated

correctly, this LC is considered as exactly recalled.

Therefore, to compare the DRNN in Fig.4 and the

RNN in Table 4, association rates of the RNN must

be raised to the 4th power. When 4 initial patterns

include 1/16 noises, the association rate is 89% by

the DRNN. On the other hand, the association rate

of the RNN is 95%, and the 4th power of that is

81%, which is lower than that of the DRNN.

When noises are included in only one pattern,

it is not necessary to use the 4th power of that. In

the case of the DRNN, when 4/16 noise are included

in only one pattern, the association rate is 34% as

shown in Fig.5 , which is higher than 20% by the

RNN with 4/16 noise as shown in Table 4.

From these results, it can be concluded that

wijk(k = 0 � 2) are e�ective. Even when the num-

ber of LCs is large enough and wijk do not include

information of the order of basic patterns enough,

they can hold information of cross-correlation among

a set of the basic patterns, which can increase the

association rates.

7. Conclusion

In this paper, we have proposed an associative mem-

ory of LCs by a recurrent neural network whose

units have serial delay elements(DRNN). It can be

concluded that, �rst, the DRNN can memorize many

LCs which have common basic patterns. Next, the

DRNN memory has higher association rates for the

noisy LCs. Finally, e�ciency of the feedback weights

from the delay elements has been also con�rmed.
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