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ABSTRACT

Recurrent Neural Network(RNN) can be applied to solve a combinatorial optimization prob-
lem. However, the existence of the local minima in this model prevents its application to real
world. In this paper, an analysis method for network dynamics based on eigenvalues and eigen-
vectors of a connection weight matrix is proposed. In this analysis, the transition of the number
of negative eigenvalues and the movement of eigenspaces by increasing diagonal elements,which
correspond to feedback loops of RNN, are discussed. From this analysis, it is confirmed that
the number of negative eigenvalues decreases and the eigenspaces move toward the ascent side
of the energy slope at the center point of the state space of RNN,as increasing diagonal ele-
ments. These behaviors of RNN contribute to the improvement for searching a solution of a
combinatorial optimization problem.

This analysis method is applied to a 2-dimensional example and 5 cities T.S. problems. From
this analysis, it is theoretically found that the network performance of detecting the optimal
solution can be improved by increasing the values of diagonal elements of connection matrix.

1. Introduction

A combinatorial optimization problem is a class
of NP-complete problems. Hopfield and Tank[1]
suggested that a Recurrent Neural Network(RNN),
which does not use self-feedback loops, can pro-
vide plausible solutions for such a problem with
less number of searches. Since this kind of prob-
lem can be applied to a variety of applications, a
lot of researches have been done[1]-[8]. However,
since the above RNN has local minima, its solution
is not always guaranteed to be the global optimal
one. This defect prevents the use of the RNN to
real applications.

For the improvement of the convergence proba-
bility to the optimal solution, Uesaka [6] proposed
the method of controlling the initial state of RNN.
However, this method is still experimental and is
theoretically proved.

Besides, Abe et al[5]and Ohta et al[7] proposed
the nonzero diagonal element method. The diago-
nal elements of a connection weight matrix corre-
spond to self-feedback loops of neurons in a RNN.
Then, the nonzero diagonal element means that
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RNN uses self-loops. They suggested that the net-
work performance for a TSP problem could be im-
proved by uniformly increasing the diagonal ele-
ments. However, this improvement has not been
well analyzed theoretically.

On the other hand, Aiyer e? al[8] proposed that
the eigenvalue analysis can be applied to RNN
dynamics. Since the eigenvalues of a connection
weight matrix are related to the network behavior,
they provide available information about the net-
work dynamics.

In this paper, we extend the eigenvalue analy-
sis method to convergence analysis of a RNN with
feedback loops. That is, the effects of diagonal ele-
ments on the network dynamics are considered.

We employ an analog model for this analysis.
Then the convergence states are not guaranteed to
take binary values. This is different from a discrete
model like the Hopfield model. However, both mod-
els are same in the viewpoint that they can change
their states in the direction of decreasing the en-
ergy function. Then, discussions in this paper may
be valid for the discrete model.
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2. Energy Function Based on Eigen-
values and Eigenvectors

2.1. Energy Function of RNN with Feedback
Loops

The energy function E(x) of a RNN is given as the
following Nth-order quadratic form.

o)

where x is the state vector of the network, W is
a connection weight matrix and th is a threshold
vector. We consider the case that the diagonal el-
ements of the matrix W can take non-zero values.
The diagonal elements mean the self feedback loops
of RNN. In order to express the change of diagonal
elements explicitly, the connection weight matrix
and the threshold vector can be written as the fol-
lowing equations.

W = Wj + 2al
th‘—‘tho—ai

E(x) = -;—x'Wx + th'x

(2)
(3)
where I is a unit matrix and i is a vector which
has only components of 1. In these equations, a
means the uniform change of diagonal elements.
The letters with the suffix 0 mean the invariant
matrix and vector by the change of diagonal ele-
ments. This transformation of connection matrix
and threshold vector change the shape of energy
function but never change the energy values on the
binary states of x.

The network energy function of Eq. (1) can be
minimized by using the following continuous state
transition.

% = —nzi(1 — z;)[Wx + thl; (n >0)(4)

where [a]; means the i-th component of the vec-
tor a in the brackets. z;(1 — z;) is the factor for re-
stricting the value z; within the closed interval[0, 1].
This factor creates the non-linear state change of
RNN. This state transition guarantees that the en-
ergy function of Eq.(1) always decreases indepen-
dently of the diagonal elements of the matrix W.

In the transformation of Eq.(2) and Eq.(3), i
is important that this transformation never change
the gradlent vector E(o) at the center point o =
.’,1 = (2, 31 2) of the hypercube state space of
RNN. This is proved by the following equations:

B() = 22 |,

=Wo+th= -;—Wol + thg

(5)

2.2. Expansion of Energy Function With

Eigenvectors

'The dynamical transition of RNNs can be roughly
understood by introducing Eigenvalue analysis.

Letting the weight matrix W have the eigen-
value ); and the corresponding eigenvector ¢; {i =
1,.++, N}, an arbitrary state vector x can be de-
composed into a linear combination of the eigen-
vectors as follows:

x = Zpi¢i'

where p; is a scaler variable which can change
during the network state transitions. By substitut-
ing Eq.(6) into Eq.(1), the energy function can be
expressed using eigenvalues and eigenvectors as fol-
lows:

B(x) = Bp) =3 3 Mp? + 3 (th')p: (1)

(6)

1 th'e; .,
=3 z’: Xi(p; + T) + Const.

Equation(7) means that the energy function can
be also decomposed into the eigenvector compo-
nents. Since the eigenvectors are linearly indepen-
dent, the network behaviors can be estimated sep-
arately based on those components.

By multiplying the eigenvector ¢; to both side of
Eq.(6), the variable p; can be expressed by the inner
product of the eigenvector ¢, and the state vector
x, that is p; = ¢ix. From this, we can see, the

terms p; + ——ﬁ in Eq.(7) means the distance from
a certain plane Then we define the hyperplane
Q; and the distance d;(x) from the hyperplane as
follows:

th’ ¢.

Hyperplane : Q; = {x|¢p}x + =0} (8)

th'e;
B ©

By using the distance d;(x) of Eq.(9), the energy
function of Eq.(7) becomes:

Distance : d;(x) = ¢}x +

E(x)= % 3 hdi(x)? + Conat. (10)

2.3. Eigenvalue Eﬂ’ects on Network State
Transition

In order to decrease the energy function of Eq.(10),
the network would change its state so that the dis-
tance d;(x) increases for a negative eigenvalue and
decreases for a positive eigenvalue. If the eigen-
value is equal to 0, the hyperplane §; does not ex-
ist. However, the network would change its state
to decrease the energy function monotonously ac-
cording to the first order term of Eq.(7). From this,
we can classify the network behaviors into the fol-
lowing tree groups. Figurel shows the image of the
network behaviors of these groups.
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Fig. 1: Network State Transition using Three Types of
Eigenvalues

Negative eigenvalue: The network state moves
so as to leave away from the hyperplane Q;.
Then, the network hypercube are separated
into two attractive regions by the hyperplane
Q.

Zero eigenvalue: The net-
work state moves monotonously to the direc-
tion of decreasing the energy function. Then,
Zero eigenvalue does not create the above sep-
aratability.

Positive eigenvalue: The network state moves
toward the hyperplane Q;. Then, a positive
eigenvalue also does not yield the separatabil-
ity. However, if the hyperplane Q; does not
include the vertex of the network hypercube,
it may create a non-binary state convergence.

The network usually has many eigenvalues. The
convergence results from the complex effects by
these eigenvalues. However, since positive and zero
eigenvalues do not create the separatability, the va-
riety of the convergence is provided only by neg-
ative eigenvalues. Then, the network convergence
patterns can be reduced by decreasing the number
of negative eigenvalues.

3. Effects of Diagonal Elements on
RNN Operation

3.1. Change of Eigenvalues

Let’s consider the influence of diagonal elements on
network dynamics using eigenvalue analysis. For
this purpose, it is assumed that the connection ma-
trix W of Eq.(2) can be transformed into the form
with eigenvalue matrix Ay and eigenvector matrix
&, as follows:

Wo = #5400 (11)

A O 0

0 A 0
A(): .

0 0 ... An
$ = [¢11¢2:"',¢N]

Then, the connection matrix of Eq.(2) can be ex-
pressed as follows;

W = Wy + 2al (12)
= ¢6A0¢0 + 20@6&0
= &, (Ao + 2a)&,
Equation(12) means that the eigenvectors
[®1, 02, - - -, dn] of the connection matrix of Eq.(2)

are invariant by uniformly changing diagonal ele-
ments. In addition, it means that the increment
of the eigenvalues is as same as that of diagonal
elements. Then, we can see that by increasing di-
agonal elements, negative eigenvalues decrease. As
this result, a variety of convergence states of RNN
decrease.

In addition, since all eigenvalues uniformly in-
crease by increasing diagonal elements, patterns far
from the eigenspace corresponding to higher eigen-
value are easy to lost the probability of conver-
gence. Aiyer et all8] suggested that the optimal
solution of the network exists toward the direction
of the eigenvector corresponding to minimum eigen-
value,(in their paper, described as maximum eigen-
value).

Then, the convergence to the optimal solution is
thought to be more stable than that of another so-
lution. Therefore,the reduction of convergence pat-
tern by increasing diagonal elements improves the
network performance for detecting the optimal so-
lution.

3.2. Movement of Eigenspace

Next, let’s focus on the movement of eigenspace
defined in Section 2. In order to make clear the
movement of eigenspace, we pay attention to rela-
tion between the gradient vector E(o) at the center
point and the normal vector n;(0) from the center
point to eigenspace. The center point o is the cen-
ter of state space of RNN and has the coordinate,
1,1,...,1). The relation between the normal vec-
tor n;(o) and eigenspace Q; is shown in Fig.2.
The normal vector n;(0) can be expressed such
as the following equation, using the distance d;(o)
from the center point o to a eigenspace ; and
eigenvector ¢; corresponding to the eigenspace.

n;(0) = —di(0)¢; (13)
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Fig. 2: Eigenspace Transition by Diagonal Elements

where the distance di(o) is given by Eq.(9).

The distance di(0) can be expressed using the
product of the gradient vector E'(o) and eigenvector
¢;, by reforming it as follows;

t t

di(o) = )‘;d’_o:'\'_Iih_?_' (14)
_ (Wo+th)'¢; _ E(0)'¢;
- A,’ - z\,’

Then, the normal vector n;(0) can be also writ-
ten with the gradient vector F(o) and eigenvector
¢,, by substituting Eq.(14) to Eq.(13). Therefore,
we can estimate the inner product of the gradient
vector E(o) and the normal vector n;(0) as follows;

_{E‘(o)'¢,-}2
A.

3

E(o)'n;(o) = (15)

The inner product of Eq.(15) means that the
eigenspace §; exists on higher energy side than the
center point if its value is positive, and that €; ex-
ists on lower energy side if it’s negative. Since the
numerator of Eq.(15) is always positive, the inner
product of Eq.(15) has a positive value for a nega-
tive eigenvalue and a negative value for a positive
eigenvalue.

As the diagonal elements of a connection
weight matrix increase, all eigenvalues increase
monotonously. When a negative eigenvalue ap-
proaches to 0, the corresponding eigenspace departs
away from the center point toward the ascent di-
rection of the energy slope. Vice versa, once a
eigenvalue become greater than 0, the correspond-
ing eigenspace approaches to the center point from
the descent direction of the energy slope. The
eigenspace corresponding to a negative eigenvalue
acts as a divergence, while the eigenspace corre-
sponding to a positive one acts as a convergence.
Then, we can say, the movement of the eigenspace
by increasing diagonal elements makes wider the at-
tractive region to the descent direction of the center
point of the state space of RNN.

It can be proved that the least energy binary
state exists on the descent side of the center point
o. Then, we can say, the movement of eigenspace
by diagonal elements contributes to the increase of
the convergence probability to the optimal solution.

4. Simulation

4.1. 2-Dimensional Network

In order to make sure of the eigenvalue effects
on the network dynamics, the behavior of the 2-
dimensional network is simulated. Figure 3 shows
the relation between the network dynamics and the
eigenvalues. The lines in each graph shows the net-
work state transition starting from random initial
states. A circle is a convergence point.

The energy function is given by the following
equation.

E(xl,xg) = 2311’2 - 1.62)1 - 0.8.’82

(16)
1 1

+§¢111‘1(1 —z1)+ 502932(1 - z32)

(17)

where,

a; 2 —1q,-16
W—[2 ag]’th.—{—%ag—o.S}
where a; and a, are parameters to control the eigen-
values, which do not change the energy value at the
vertices. The order of the energy levels at vertices is
that £(0,0) > E(1,1) > E(0,1) > E(1,0). Then,
the optimal solution locates on the vertex(1,0).
The eigenvalues are shown under each graph.

In the 2-dimensional case, there are 2 eigenval-
ues in the connection weight matrix. If both are
positive, the network converges to one point in the
[0,1] square region. This is a non-binary conver-
gence. By decreasing the eigenvalues, the conver-
gence point approaches to the edge. When one of
the eigenvalues is equal to 0, the network converges
only to the vertex (1,0). By decreasing the eigen-
values more, the number of convergence states is in-
creased gradually. When both eigenvalues are large
negative, the number of convergence states become
4. . =

From this example, it is understood that the con-
vergence probability to the optimal solution is im-
proved by increasing eigenvalues. In this case, when
one of the eigenvalue is 0 and another is positive,
the convergence probability became best.

4.2. T.S.Problem

The method of controlling diagonal elements is ap-
plied to T.S.Problem. Fig. 4 shows the simulation
results. The vertical axis of (b)(e) graphs show the
amount of increments of diagonal elements. The
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(a) Diagonal elements: ai=a= +6.0 (b) Diagonal elements: ai=a2= +2.0 (c) Eiagonal elements: ai=a>= +0.0

Eigenvalues =(2,6)

Eigenvalues =(0,4)

Eigenvalues =(-2,2)

(d) Diagonal elements: ai=a=-3.0

Eigenvalues =(-4.0)

(e) Diagonal elements: ai=a:= -6.0
Eigenvalues =(-6,-2)

Fig. 3: Simulation of Network State Transition by Changing Eigenvalues

value 0 means that the maximum eigenvalue of con-
nection matrix is 0, that is, all eigenvalues are not
positive. Fig. 4(a) shows a pattern of city positions
and the shortest path for traveling their cities. In
this simulation, the condition of going back to a
starting city is removed for increasing the variation
of solutions.

In Fig. 4(b), the energy distribution of network
convergence states is shown. The simulations were
repeated 1000 times for each value of diagonal el-
ements. The value increment of diagonal elements
was 0.5. For the state change of RNN, the dif-
ferential approximation of Eq.(4) was used. This
state change operations were iterated until the net-
work state didn’t change. In this figure, the bold
line shows the distribution of a binary convergence
and the thin line shows the non-binary convergence.
The alternative of binary or non-binary convergence
was done by estimating whether all components of
the network state vector are more than 0.9 or less
than 0.1.

As diagonal elements increasing, the convergence
changes from a binary state to a non-binary state.
In addition, the energy of it decreases and the vari-
ance of the energy distribution becomes small.

Figure 4(c) shows the convergence probability to
the optimal solution. The optimal solution was pre-
searched by estimating all traveling patterns. The
probability to the optimal solution increased un-
til 8.0 of diagonal elements. However, over that

value, it rapidly fell down. This is by reason that
the convergence to the optimal solution changed to
a non-binary state.

Figure 4(d) shows the number of negative eigen-
values. As described in section 3, the number of
negative eigenvalues decreases as increasing the di-
agonal elements. The decrease of the variance of
convergence state is due to this decrease of nega-
tive eigenvalues.

Figure 4(e) shows the distances of eigenspaces
from the center point. The sign of a distance is set
such as the descent energy side of the center point
is positive. From this graph, it is understood that
all the distances first move to negative large value,
and then, change from positive large value to 0. As
described in section 2, this movement of eigenspace
is one of the reasons of improvement of convergence
performance of RNN with feedback loops.

From two simulations described in this section, it
could be confirmed that the increase of diagonal el-
ements can improve the convergence probability to
the optimal solution. Then, in order to apply RNN
to a combinatorial optimization problem, it is bet-
ter to use RNN with feedback loops than that with
no feedback loop. However, it has been also con-
firmed that if the diagonal elements are too large,
the network would converge to a non-binary state,
which is undesirable. Then the upper boundary is
necessary for the diagonal elements.
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Fig. 4: Network Transition by Diagonal Elements

5. Conclusion

In this paper, we have proposed the analysis
method using the eigenvalue and the hyperplane
corresponding to the eigenvalue. Using this an-
alyzing method, the transition of the number of
negative eigenvalues and the movement of the
eigenspaces have been discussed theoretically. As
the results, it has been confirmed that both tran-
sitions by increasing diagonal elements contribute
to improvement of the convergence probability to
the optimal solutions. Moreover, this improvements
have been confirmed by simulations using the 2-
dimensional network and 5 cities T.S.problems.

However, the network with the nonzero diagonal
clements may create non-binary solutions. In order
to escape this undesirable solutions, the network
needs the upper boundary for diagonal elements.
It is difficult to decide this factor. Besides, it could
not be proved theoretically whether the survival so-
lutions on high diagonal elements include the opti-
mal solution. These are next problem.
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