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ABSTRACT

In this paper, probabilistic memory capacity of recurrent neural networks(RNNs) is inves-
tigated. This probabilistic capacity is determined uniquely if the network architecture and the
number of patterns to be memorized are fixed. It is independent from a learning method and
the network dynamics. It provides the upper bound of the memory capacity by any learning
algorithms in memorizing random patterns. It is assumed that the network consists of N units,
which take two states. Thus, the total number of patterns is the Nth power of 2. The probabilities
are obtained by discriminations whether the connection weights, which can store random M
patterns at equilibrium states, exist or not. A theoretical way for this purpose is derived, and
actual calculation is executed by the Monte Carlo method. The probabilistic memory capacity
is very important in applying the RNNs to real fields, and in evaluating goodness of learning
algorithms. As an example of a learning algorithm, the improved error correction learning is
investigated, and its convergence probabilities are compared with the upper bound. A linear
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programming method can be effectively applied to this numerical analysis.

1. Introduction

Many studies have been done about memory capac-
ity of recurrent neural networks(RNNs)[1],[2]. Es-
pecially, in the case of Hopfield network, mem-
ory capacity is estimated about 0.15N by computer
simulations[1], where N is the number of units. The
connection weights are decided by the outer product
rule in the Hopfield network. Various theoretical
investigations on the capacity have been done. How-
ever, the maximum memory capacity, which doesn’t
depend on learning methods, has not been well dis-
cussed.

On the other hand, the ability of linear threshold
elements to classify patterns was studied by Cover(3].
However, this study dealt with the patterns whose
components take continuous values, and a set of pat-
terns were considered to be in @-general position,
where every N element subset of the vectors is lin-
early independent in N-dimensional space. When
the units take two states, the patterns locate at the
vertices of an N-dimensional hypercube. So, the pat-
terns cannot be considered to be in ¢-general posi-
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tion.

In our approach, the memory capacity of RNNs is
evaluated by the probability that the given number
of the random patterns can be memorized at equi-
librium states.

In Sec.2, the network equations of an RNN are
shown. In Sec.3, a concept of probabilistic mem-
ory capacity is described. Furthermore, in order
to obtain the probability, a method to discriminate
whether the connection weights exist or not is pro-
posed. In Sec.4, numerical analysis results of the
probabilities with respect to the number of units and
the number of patterns are shown. In Sec.5, as an
example of a learning method, the improved error
correction learning[4] is investigated, and its con-
vergence probabilities are compared with the above
probabilities. In Sec.6, the proposed method is mod-
ified so as to apply a linear programming method to
a numerical calculation process.



2. Recurrent Neural Network

Let u;(n) and v;(n) be the output and the internal
state of the ith unit, respectively. Furthermore, the
connection weight from the ¢th unit to the jth unit
is denoted wj;. The network equations are given by

N .
vj(n) = ijiui(n) , wi; =0 (1)

i=1
sein={ TP 220 @

N is the number of the units. Patterns memorized
by the RNN are N-dimensional vectors. Memorized
patterns are selected at random from all possible 2V
patterns. Self-feedbacks are not used, that is w;; = 0.
If this condition is not imposed, it would be able
to store all the 2V patterns by making up all self-
feedbacks to positive and all the other weights to
zero. Therefore, w;; = 0 is quite natural assumption
for the purpose of this paper.

3. Probabilistic Memory Capacity

3.1. Definition

The memory capacity usually depends on a set
of patterns. For example, a set of patterns
P1 = (+l;+1)+1”+1a+1’+1) and P2
(+1,+1,+1,---,41,41,—1) cannot be memorized
by an RNN. The reason is the following: In both
patterns, the input potential of the Nth unit is given
by

N-1

N
Ewmu.‘ = E WNili + WNNUN
i=1 i=1
N-1
= E WNil
i=1

N-1

E WNi (3)
i=1

This value must be positive for p; because the output
of the Nth unit is +1, and must be negative for p,
because the output of the Nth unit is —1. These two
requirements contradict to each other. Therefore,
this set cannot be memorized.

As described above, the connection weights don’t
always exist. The possibility is highly dependent on
the pattern combinations.

There are 8 Cps combinations in the case of se-
lecting M patterns from all possible 2V patterns.
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When a% of ;5 Cjps combinations can be memorized,
the probabilistic memory capacity of this RNN fo
M patterns is defined to be a%. This capacity is
determined uniquely if the network architecture ang
the number of patterns to be memorized are fixed.
It is independent from a learning method and the
network dynamics. It provides the upper bound of
the memory capacity by any learning algorithms i
memorizing random patterns.

3.2. Existence of Connection Weights

M patterns to be memorized are selected from 2V
patterns, and are expressed by

Pt = (Pe1,Pe2," - PEN) (4)
prj =+lor—1
1<k<M

In order to obtain the probabilistic memory capacity,
it is necessary to discriminate whether a set of M
patterns can be memorized or not. In other words,
this discrimination can be said the discrimination
whether wj;, which satisfy the alignment condition
Eqs.(5)-(7) for M patterns, can be obtained or not.
Thus, the discrimination is equivalent to the check
of “the existence of connection weights”.

N
ijipki >0 for prj=+1

%)
i=1
N
ij;pk; <0 for ppj=-1 (6)
i=1
1<k<M )

3.3. Conditions on Connection Weights

The condition, under which the connection weights
exist, can be represented geometrically as follows:
Now, whether connection weights exist or not con-
cerning the Nth unit is considered. The M vectors
composed of the remaining (N-1) units represented
by the following expression correspond to M vertices
of the (N-1)-dimensional hypercube.

Pk = (Pr1,Pr2, PrN-1), 1<ES M (8)
The whole patterns are given by
Pr = (Pk,PeN) , PN = £1 9)



In order to memorize pg, the following conditions are
required.

(10)
(11)

These conditions are expressed in other words like
the following. If the vertices, where the value of the
Nth unit is +1, and other vertices, where the value
of the Nth unit is -1, can be divided by a hyperplane
through the origin point, then the connection weights
exist. The normal vector of the hyperplane can be
used as the connection weights. The reason, why the
hyperplane is through the origin point, is that the
bias term is assumed to be zero in Eq.(1). If such hy-
perplanes exist for all units, the connection weights
of the RNN memorizing the M patterns exist.

Figure 1 shows an example of the relation be-
tween the vertices and the hyperplane. In this ex-
ample, N=4 , M=5 and the connection weights
for the 4th unit exist. Memorized patterns are
A=(1,-11-1),B=(-1,-1,-1,-1),C =
(-1,1,1,-1),D=(1,11,1) , E = (1,1,-1,1).
The values of the 4th units of A, B and C are -1.
So, they are represented by black vertices. On the
other hand, the values of the 4th units of D and E
are +1. So, they are represented by white vertices.
In this case, three black vertices and two white ver-
tices can be divided by the hyperplane through the
origin point as shown in Fig.1. This means that the
connection weights for the 4th unit exist. Then the
components of the normal vector of the hyperplane
can be used as the connection weights.

So, it is necessary and sufficient to discriminate
whether the hyperplanes described above for all units
and all given patterns are exist or not.

wp' >0 for pin =+1

wp}' <0 for ppwy =—1

Discrimination Whether Connection
Weights Exist or Not

3.4.

The normal vector of the hyperplane, corresponding
to the connection weights, is represented by z in this
paper. z is an (N-1)-dimensional vector.

(12)

If the connection weights exist, the vertices can be
divided by a hyperplane through the origin point. So,
z corresponding to the connection weights satisfies
the following conditions[5].

z = (21)22)' : ':ZN—I)

N-1

Piz' = ) prjzj 20 if pen = +1
=1

(13)
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Fig. 1: Hyperplane which can divide vertices corresponding to
patterns (N=4 , M=5).

N-1

Piz' = ) priz <0 if pen = -1
j=1

(14)

An example of normal vector is shown in Fig.2, where
N=4, M=T7 and the connection weights for the 4th
unit exist. The black vectors correspond to the pat-
terns in which the values of the 4th units are -1. On
the other hand, the white vectors correspond to the
patterns in which the values of the 4th units are +1.
In this case, three black vectors and four white vec-
tors can be divided by the plane through the origin
point. The normal vector of the hyperplane is z.

Fig. 2: Normal vector of hyperplane which divides vertices

As the components of patterns are restricted to



be +1 or —1, it isn’t necessary to consider the infinite
number of the vectors for candidates of z. From some
geometric consideration, it is assumed that:

-When N is less than 4, it is sufficient to consider
about 3¥-! vectors in which each component is one
of {-1,0,+1}.

-When N is not less than 4, it is sufficient to consider
about (2N —5)N-! vectors in which each component
is one of

{—N+3,-N+4,---,—1,0,41,---,N—4,N—3}
2N-5

(15)

So, it is able to know whether connection weights

exist or not concerning the unit by using a computer.

The same way is effective for the other units. If

the connection weights exist for all units, the given
set of patterns is able to be memorized.

4. Numerical Analysis

If N isn’t quite small, it is difficult to examine
all combinations of M patterns which are selected
from 2V patterns. So, the Monte Carlo method is
adopted. That is, the probabilities can be estimated
by using a sufficient number of combinations of M
patterns selected at random from 2V patterns. The
method described in the previous section is used to
discriminate whether connection weights exist or not,
which satisfy Eqs.(5)-(7) for the given M patterns.
Table 1 shows the probabilities which are obtained
about various combinations of N and M. Each prob-
ability is calculated by using 1000 sets of M patterns
selected at random.

Table: 1: Probabilities(%) of the connection weights.

M 1 2 3 4 5 6 7 8
N
3 100.0 35.8 1.7 0.0 0.0 0.0 0.0 0.0
4 100.0 61.0 23.7 5.3 0.8 0.2 0.0 0.0
5 100.0 75.2 411 17.7 3.5 0.3 0.1 0.0
6 100.0 848 629 383 177 4.9 1.4 0.7
7 1000 925 767 579 384 206 86 2.0

From this table, the memory capacity is esti-
mated about 0.5N with 60% probability. These
probabilities are interpreted as follows : When we
develop an associative memory using the RNN, if
we want to memorize 0.5N random patterns, the
probability of success is about 60%. Of course, this
table represents the probabilities about no more than
extremely limited combinations of N and M. Some
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features may appear clearly on the large table whic},
is calculated about much more combinations of N
and M. This is a near future work concerning Sec ¢

5. Estimation of Goodness of Learning
Methods

5.1. Improved Error Correction Learning

As an example of learning algorithms for memorizing
patterns by a recurrent neural network, the improved
error correction learning is taken into account[4].

In this learning algorithm, hysteresis threshold
+ T and hysteresis margin dT were introduced in
order to improve recall performance from noisy pat-
terns and stabilize a learning process, respectively[4].
This learning algorithm is shown in the following.

I. Initialize connection weights.

w;i(0)=0, 1<4,j<N (16)
II. Calculate network state.

The weighted sum input of all units are calcu-
lated after setting the network state to a cer-
tain pattern to be memorized. Letting p;(n)
be the state, that is the output, of the ith unit
for the given pattern, the weighted sum input
v;(n)is given by

ui(n) = pi(n) n
N
vi(n) =Y wiiui(n) (18)
i=1
III. Calculate correction of weights.
When pj(n) = +1,
if vj(n) > T, then
Aw;i(n) =0 (19)
if vj(n) < T, then
T +dT — vj(n)
. (n) = ; 0
Awgn) = THT 6O 0y ()
When p;(n) = -1,
if vj(n) < =T, then
Awji(n) =0 (21)
if vj(n) > =T, then
—T —dT — v
Awji(n) = T le (n)p,-(n) (22)



dT is a margin for the threshold level, which
can avoid unstable behavior in an error cor-
rection learning process and can accelerate the
learning speed [4].

IV. Update connection weights.
Using Aw;;(n) calculated in III, all connection
weights are adjusted at the same time by
wji(n+ 1) = wji(n) + Awji(n)  (23)
V. I-IV are repeated until Awj;j(n) = 0 for all

patterns.

After convergence, the network always satisfies
the followings for all the input patterns which are
memorized.

if pj =+1 then v; > 4T (24)

if pj=-1 then v; < -T (25)
5.2. Estimation of Goodness of Error Correc-
tion Learning

Table 2 shows the simulation results of convergence
probabilities of the improved error correction learn-
ing algorithm for memorizing random patterns. Each
probability is calculated by using the same 1000 sets
as the calculations of Table 1.

Table: 2: Convergence probability(%) of the improved error
correction learning. d7/T=0.1

M 1 2 3 4 5 6 7 8
N
3 100.0 13.7 0.0 0.0 0.0 0.0 0.0 0.0
4 100.0 47.8 8.5 1.0 0.2 0.0 0.0 0.0
5 100.0 67.1 30.3 8.1 1.6 0.1 0.1 0.0
6 100.0 79.4 54.0 279 10.1 2.9 0.7 0.5
7 100.0 908 69.5 49.0 279 125 42 0.9

Comparing Table 1 and Table 2, as a matter
of course, the convergence probabilities by the im-
proved error correction learning are lower than or
equal to the upper bound. The lowness is caused by
the fact that the improved error correction learning
cannot memorize the patterns using the condition
of ‘=" in ‘vj(n) > 0’ about Eq.(2) as far as using
positive T. It is necessary to use the condition of
‘=’ when more than (N-2) vertices are in a hyper-
plane through the origin point. In fact, removing
the condition of ‘=" in ‘vj(n) > 0’ about Eq.(2),
all the probabilities of the connection weights have

1295

agreed with Table 2 perfectly. In other words, the
improved error correction learning using positive T
can find the connection weights as far as more than
(N-2) vertices aren’t in a hyperplane through the
origin point. Of course, if zero T' is used in Eq.(20),
it may be possible to find the connection weights
about such vertices. However, considering actual
calculation, infinitesimal numerical error may make
it difficult to converge. So, in this paper, zero T isn’t
considered and it is considered that the improved
error correction learning cannot find the connection
weights about such vertices.

The ratios of the both Tables are shown in Ta-
ble 3. In the low probability cases, the statistical
condition may not be satisfied and the errors are
assumed to be large. So, these cases are removed
and expressed by “-” in Table 3. The larger the
number of memorized patterns is, the lower the ratio
is.

Table: 3: The ratios of the convergence probabilities of the
improved error correction learning and the upper bound.

M 1 2 3 4 5 6 7 8
N
3 100.0 38.2 - - - - - B
4 100.0 784 359 189 - - - -
5 100.0 89.2 73.7 458 45.7 - - -
6 100.0 93.6 859 728 571 59.2 - -
7 100.0 98.2 90.6 846 72.7 60.7 488 -

6. Linear Programming Method

In Sec.3.4, we have proposed a method to discrim-
inate whether the connection weights exist or not.
However, the calculation amount of this method is
very large. It has the order of N¥. There is another
method to discriminate more efficiently.

Considering about the Nth unit, Egs.(5)-(7) can
be rewritten as follows:

N-1

D wnipki 20 for piv = +1 (26)
i=1
N-1
> wnipki <0 for pen =1 (27)
i=1

1<k<M (28)

We want to know whether the solution of these
simultaneous inequalities exists or not. Eqs.(26),(27)
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