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ABSTRACT

A neural demodulator is proposed for quadrature amplitude modulation (QAM) signals. It
has several important features compared with conventional linear methods. First, necessary
functions for the QAM demodulation, including wide-band noise rejection, pulse waveform
shaping, and decoding, can be embedded in a single neural network. This means that these

functions are not separately designed but are unified in a learning process.

Second, these

functions can be self-organized through the learning. Supervised learning algorithms, such
as the back-propagation algorithm, can be applied for this purpose. Finally, both wide-band
noise rejection and a very sharp waveform response can be simultaneously achieved. It is very
difficult to be done by linear filtering. Computer simulation demonstrates efficiency of the

proposed method.

1. Introduction

Neural networks (NNs) have been effectively applied
to signal processing and pattern recognition [1] - [5].
Features of NNs include self-organization, learning,
nonlinear functions, and parallel implementation.
How to utilize these features in each application is
an important point.

Communication is also an interesting application
field of NNs. Some nonlinear distortion can be com-
pensated for by using NNs [3].

In this paper, demodulation problems are dealt
with ,[6], [7]. In the demodulation process, undesir-
able signals and noises are rejected through filters.
The extracted signal is transformed into its origi-
nal or another desired waveform. Noise rejection
filters usually distort a time response. If the original
waveform is very sharp, like a pulse waveform, this
distortion becomes fatal error.

In this paper, a neural demodulator for quadra-
ture amplitude modulation (QAM) signals is pro-
posed. A multi-layer neural network (MLNN) and
the back-propagation algorithm [8] are employed.
The purpose of this model is to achieve both wide-
band noise rejection, a very sharp waveform response
and code transformation, which are difficult to be
done by linear filters. Trained network structure,
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internal representation and an optimum activation
function are discussed. Simulation results are also
shown in order to examine efficiency of the proposed
method.

2. Quadrature Amplitude Modulation
and Demodulation

Figure 1 shows a transmitter of the 16QAM. Bi-
nary codes (S11,812) and (s21, S22) are transformed
into 4-level signals, and are bandlimited by the
roll-off filters. Furthermore, they are modulated
by the quadrature carriers, and are composed into
zoam(n).

zgam(n) is expressed by

“QAM(T‘)‘

= A Z amg((n —m)T) coswenT

m=-—0Q0

—A Z brmg((n — m)T)sinw.nT (1)

m=-00

where, am and b, are the 4-level signals, and g(nT)
is the impulse response of the roll-off filter. A is a
some gain factor. For convenience, nT is represented
by only n in this paper.
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Fig. 2: Receiver of 16QAM.

The transmitted signal is demodulated at the
receiver. A block diagram for the conventional de-
modulator model is illustrated in Fig.2. The noise
included in the signal is rejected by passing a band-
pass filter (BPF) at the front-end of the receiver.
The signal is separated into two channels, the in-
phase channel (I-channel) and the quadrature chan-
nel (Q-channel). The original signal is extracted
from the coherent detected signal through a low-pass
filter (Roll-off filter). The extracted multi-level code
is transformed into the binary code.

3. Neural Demodulator for 16QAM

A block diagram for the proposed neural demod-
ulator model is illustrated in Fig.3. The received
signal z(n) includes the QAM signal zgam(n) and
additive-white-Gaussian noise (AWGN) noise(n) as
follows:

z(n) = zgam(n) + noise(n) (2)

This signal is applied to the neural demodulator di-
rectly, and are transformed into the binary codes.

Figure 4 shows the proposed multi-layer neural
demodulator. The input layer is composed of a de-
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Fig. 3: Neural demodulator for 16QAM.
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Fig. 4: Neural multi-layer demodulator for
16QAM signals. [ =1,2.

lay line, including N-1 delay elements. T is a sam-
pling period. The output of the i th delay element
is denoted z;(n — 7). N samples of z(n), that is
zi(n—1),i =0 ~ N —1, are transmitted through the
connections in parallel. A bias unit is used, which
always outputs 1 to the hidden units and the output
units in order to adjust bias.

Let the connection weight from the i th delay
element to the j th hidden unit be wiji, and from
the j th hidden unit to the k th output unit be Wikj.
Network equations are expressed as follows:

N-1
wj(n) =Y wyizm(n — i) + wy (3)
i=0
vij(n) = fu(w;(n)) (4)
M-1
netlk(n) = E w;kjvlj(n) + wik (5)
j=0
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1e(n) = for(netix(n)) (6)

wyj and wyy are the connection weights from the bias
unit to the j th hidden unit and the k£ th output
unit, respectively. fy(-) and fox(:) are activation
functions of the hidden units and the &k th output
unit, respectively.

The original binary data in each channel, that is
s11(n), s12(n), s21(n) and s23(n), are used as targets.
Since these data are modulated in generating the
QAM signal, a sample of zgam(n) is closely related
to its neighborhood samples, that is zgapm(n — 1),
—N/2<i< —-1and +1 <i<+N/2. Furthermore,
51e(n) is calculated using zi(n —1),0 < i < N -1,
as shown in Egs.(2)-(7). z;(n) is given by

¢1 = 0, ¢2 = 71‘/2

(7)
Therefore, six(n—N/2),1=1,2,k = 1,2, are used as
the targets for 5;x(n). The output error is evaluated
by

zi(n) = z(n)cos(wc% + &)

eie(n) = sie(n— N/2) — 3”:(") (8)

It should be pointed out that the proposed NN
does not separate functions required, rather all func-
tions are unified in a single NN.

4. Learning Algorithm and Activation
Functions

4.1. Learning Algorithm

The Back-propagation algorithm is very powerful
for the MLNNs. It is also employed in our model.
An important point of the learning is to automat-
ically design necessary functions, including wide-
band noise rejection and pulse waveform regenera-
tion. Because these requirements are difficult to be
satisfied simultaneously by linear signal processing.

4.2. Activation Functions

Another important point of the neural network de-
sign is to optimize activation functions for each ap-
plication. In this paper, we use a sigmoid function
given by Eq.(9) in the hidden layer.

1+e°"
l—e-*

fu(z) =

(9)

In the output layer, the received multi-level wave-
forms should be transformed into two-level wave-
forms, that is binary code. Four-level signals are

transformed into 2-bit binary signals. For this pur-
pose, different kinds of activation functions are em-
ployed for the most significant bit (MSB) and the
least significant bit (LSB). They are given by

1

MSBI fol(r) = m (10)
LSB: fo(z) = foi(z+ TH)

“fol(x)

+ fa(z - TH)  (11)

These activation functions are shown in Fig.5, where
the binary codes are also shown. Using these nonlin-
ear functions, the multi-level signals can be linearly
transformed into the binary codes.
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Fig. 5: Activation function of output unit.

5. Simulation and Discussions

5.1. Conditions of Simulation

The baseband pulse signals of each channel have the
amplitude of +3,41, and the minimum pulse width
is T = 1 sec. The carrier frequency is f. = 20
Hz, and the sampling frequency is f, = 200 Hz.
These frequencies are normalized for convenience.
The number of samples, applied to the network in
parallel, is chosen to 200, which can cover the min-
imum pulse width. In each MLNN, the numbers of
the input units and the hidden units are 200 and 16,
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respectively. The number of the output units is two
corresponding to §;; and §;5. Examples of the QAM
signals and AWGN are shown in Fig.6 and Fig.7,
respectively.

Amplitude

4 5 6
TIME [sec)

Fig. 6: Example of QAM signal.

Amplitude

4 5 (-3
TIME [sec])

Fig. 7: Example of white Gaussian noise.

Simulation was done using 16QAM signal includ-
ing AWGN. Furthermore, a phase difference between
carriers used in the transmitter and in the receiver
is also taken into account.

The MLNN is trained during some interval,
where 7 x 107 signal samples, that is 3.5 x 10° pulses
are included. After this interval, the training is
stopped, and the network is fixed. Different data
sequence, that is test data, are applied to this net-
work for evaluating generalization.

5.2. Convergence Property and Generaliza-
tion

Figure 8 shows a learning curve. The AWGN is
included, and a signal-to-noise ratio (SNR) is 7 dB.

AWGN Environment

The neural demodulator is evaluated by using the
QAM signal with different data sequence from the
training signal and with the AWGN, SNR = 7 dB.
Figure 9 shows the output §;1(n).

From this figure, the neural demodulator can
output very sharp waveforms. A linear filter, de-
signed to reject the wide-band noise, cannot produce
such a sharp response. Because a high-Q linear fil-
ter usually causes waveform distortion in the time
domain.

Phase Error Environment

In the coherent detector, the phase difference be-
tween the carriers in the transmitter and the receiver
may causes the output waveform distortion. In the
conventional demodulator, the phase difference 66
causes the following amplitude distortion.
a; b; .

S = E-cos(éﬂ) - —2—sm(60) (12)
Where, S is signal after passing a filter. a; and b; are
baseband signals of I-channel and Q-channel, respec-
tively. 66 is phase error. When 60 = 10 degrees, the
amplitude, which ideally takes 1 or 0, may change
by 0.35. Therefore, the noise margin is decreased to
0.15, while the ideal noise margin is 0.5.

Figure 10 shows the output §;;(n) with the phase
error 6 = 10 degrees. The output waveform is still
very sharp. The waveform distortion is about 0.13
at most in the middle part of the pulse waveform as
shown in Fig.10. Thus, the neural demodulator is
robust for the phase error of the carriers.

5.3. Connection Weights

Figures 11(a) and 11(b) show the examples of the
connection weights from the input layer to the hid-
den units. Amplitude of the Fourier transform for
these connection weights are shown in Figs.12(a) and
12(b), respectively. From these figures, the connec-
tion weights from the input layer to the hidden unit
are similar to an impulse response of low pass filters
(LPFs). Both sets of the connection weights have the
amplitude response of LPF. Because, the frequency
component of zgaam(n) is shifted to DC and 40 Hz
by multiplying zgam(n) by cos(wct) or sin(w.t).
The DC component is used to regenerate pulse wave-
forms. Thus, the DC component should be passed,
and the 40 Hz component and the AWGN should
be suppressed. Such characteristics are achieved
through the supervised learning.
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Fig. 8: Learning curve for 16QAM
with white Gaussian noise.
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Fig. 9: Example of (a) target signal s11(n)
and (b) output signal 311(n).
SNR = 7 dB.
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Fig. 10: Example of output signal 311 (n).
Phase error is 10 degrees.

Furthermore, the following should be pointed
out. Using 16 hidden units mean to use 16 nonlinear
filters. Each filter can suppress the noise and the
unnecessary component. At the same time, they co-
operate with each other in pulse waveform shaping.
In the case of linear signal processing, a single linear
filter is usually used. Furthermore, using several
linear filters in parallel cannot provide any benefit,
because the composition of them is equivalent to a
single filter. Thus, its performance is limited, com-
pared with the neural version.

6. Conclusions

The neural demodulator for the 16QAM signals has
been proposed. Necessary functions, including wide-
band noise rejection, pulse waveform regeneration
and decoding can be embedded in the single NLNN.
These functions are self-organized through the learn-
ing. The activations have been optimized.
Computer simulation shows efficiency of the pro-
posed method. AWGN, up to SNR = 7 dB, can
be well rejected. The effect of the phase error of
the carriers up to 10 degrees is also suppressed.
Furthermore, the very sharp pulse waveform can be
generated. Accuracy of demodulation was very high.
Conventional methods, using a linear filter, cannot
provide good performance like the proposed MLNN.
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