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ABSTRACT

The block orthogonal projection algorithm which is one for
transversal filters can be applied to a linear dichotomy (so
called Perceptron) which consists of a transversal filter and
a sign function. When the block size which is the number of
examples used in one time of renewal is one, the algorithm
is equivalent to the normalized LMS algorithm and is proven
to stop in a finite number of iterations when the learning
coefficient is unity. This report gives the block size which
maximizes the convergence rate when the learning coefficient
is unity, and confirms it by computer simulations. The results
say that larger block size is not necessarily better.
KEYWORDS: Perceptron, Block Orthogonal Pro-
jection Algorithm, Convergence Rate

1. Introduction

In the field of linear adaptive filters, transversal filters which
output
1

for the input signal vector £ € R™ are most popular. The
Least Mean Square (LMS) algorithm,

y=z'weR

(2)

is one of the simplest adaptive algorithms for transversal fil-
ters where i, d and (d — z‘w) are the learning coefficient, the
desired output and the output error, respectively. It is a kind
of stochastic descent methods and it makes the weight vec-
tor converge in probability to the optimal which minimizes
the mean square error if 0 < g < 2/Amax Where Amax is the
maximum of the eigenvalues of the covariance matrix of the
input vector[2]. The discussion above means that we cannot
set the learning coefficient to one which guarantees the con-
vergence. The normalized LMS (N-LMS) algorithm[2, 9] is
an advanced one in this point It is written as

Aw = pz(d — ztw),

Aw = pz(d - z*w)/||z)|? 3)
where Aw is independent from the magnitude of the input
Z and the convergence condition is improved to 0 < p < 2,
though the convergence is still slow for colored input signals.

If we neglect the observation errors for simplicity, the N-
LMS algorithm orthogonally projects the weight vector onto
the hyperplane which intersects the input vector orthogonal-
ly and includes the optimal weight vector. From this point of
view, the N-LMS algorithm is easily developed to the Block
Orthogonal Projection (BOP) algorithm(3, 10, 1] which or-
thogonally projects the weight vector onto the space which
intersects a set of input vectors orthogonally and includes the
optimal weight vector. It is therefore written as

Aw=pXte (4)

where Xt = X(X'X)™! (the transposition of the Moore-
Penrose generalized inverse matrix of X), X is an N x m
matrix made from m input vectors

X =[z1,..,Zm], (5)
and m dimensional error vector
e=[el,...,em]°. (6)

The BOP algorithm is said to converge fast even when the
input signal is colored, which is analyzed theoretically[4, 5].

On the other hand, a linear dichotomy (so called Perceptron)

()

consists of a transversal filter and a sign function and is also
used as an element of neural networks. Since the Percep-
tron Learning, a learning algorithm for linear dichotomies, is
written as

y = sign [ztw]

1 . t . : t

Aw = 7% ( sign [z w ] sign [z w]) (8)
using the true parameter w”, it can be regarded as the LM-
S algorithm for linear dichotomies. In a linear dichotomy,
not only the output sign [:z:‘w] but also the value z*w can
be calculated because the input and the weight vector are
known. So, the Perceptron Learning can be developed in the
same way that the LMS algorithm is to the N-LMS or BOP
algorithms.

When w gives the wrong output for the input z, —aw outputs
the true sign where a is a positive constant. Then, we can

use —az’w as the desired output and derive an algorithm

Aw =
= —(1+a)pzz’w

pz(—aztw — 'w)
(9)

where the renewal is done only when the output is wrong.
And we assume a = 1 without loss of generality.

Normalizing Aw in Eq. (9) according to the weight as well
as the N-LMS algorithm, we derive

Aw = —2pzztw/|z||? (10)
which geometrically means that it orthogonally projects w
onto the hyperplane zfw = 0 when g = 1/2 and that it
symmetrically moves w with regard to zfw = 0 when px =1
(Fig. 1).

It is well-known that the Perceptron Learning stops in a finite
times of renewal when the learnable data set is given. The
algorithm mentioned above, however, does not necessarily
stops and it converges for a given data set if and only if
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Figure 1: Geometrical Meaning of the N-LMS algorithm

p = 1[4, 8]. Hence, we consider the case of 4 = 1 in the
following. The BOP algorithm for linear dichotomies can be
defined[6) as well as the N-LMS algorithm as

Aw = -2uX X 'w (11)

and its convergence properties are analyzed in (7, 8]. Miyoshi
et al. have analyzed the convergence rate of the BOP algo-
rithm, which is called Symmetric Learning Algorithm in [7],
and have derived that the convergence rate is maximum when
the block size (the number of examples used in one time of
renewal) is set to a half of the dimension of the weight vec-
tor, though they have conjectured that the convergence rate
becomes larger as the block size increases when it is small. In
this paper, we show the conjecture above by considering how
the increase of the block size influences to the convergence
properties.

2. Block Orthogonal Projection Algorithm and
Assumptions

Let the input and weight vectors z and w of the linear di-
chotomy be N dimensional vectors. Since the output of the
linear dichotomy is independent from the magnitude of w
and Aw in Eq. (11) does not change the magnitude, we can
assume ||w|| = |Jw*|| = 1, that is, w,w"* € S where S means
N — 1 dimensional unit hypersphere without loss of general-
ity. In the same reason, we also assume z € S where Sy is
a half of S and the true machine always outputs +1 since an
example (z,—1) (the true machine with w* outputs —1) is
equivalent to (—z, +1) in renewal. In the following, z itself is
called an example and assumed to be chosen uniformly from
S+. Since the examples for which the current w outputs the
true signs are not used in renewal, the examples are chosen
from a part of S4 as shown in Fig. 2 in practice. The BOP

Figure 2: Distribution of Examples

algorithm with the block size k renews the weight vector w
according to Eq. (11) using k examples chosen as above. S-
ince the weight vector is symmetrically moved with respect
to the complement of the space spanned by k examples, the
BOP algorithm with g = 1 is called “Symmetric Learning
Algorithm” in [7].

Leaming 1

3. Geometrical Meanings of Increase of Block

Size
Let the complement R¥~* of the space spanned by k ex-
amples z1,...,z) be denoted by C, and the current weight

vector, the true, their midpoint in R", and the line which
includes the three points are defined by w, w*, wmid, and I,
respectively. Fig. 3 clearly shows that the distance between

Figure 3: Relation of the weight vectors (in case C = R')

w" and w* which is the symmetry of w with respect to C
is twice as much as that between wmiq and wc which is the
orthogonal projection of w onto C, and the distance between
w* and w is so as that between wmiq and w. Here, we con-
sider the case where another example z+; is also used in the
renewal. Then, since w is moved symmetrically with respect
to the complement C’ of the space spanned by k+1 examples
to the point named wt’, the distance between w* and w*’ is
twice of that between wmiq and wc' which is the orthogonal
projection of w onto C’. Therefore, we consider the distances
of wc and w¢' from wmiq in order to discuss the influence of
the added example z41.

Since C' is a subspace of C and wc' € C, wc' is the orthog-
onal projection of wc onto C' as shown in Fig. 4. And we

w
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Figure 4: Properties of Orthogonal Projection

divide the vectors to the element in C and its complement
in order to compare the distances of wc and w¢g’ from wmiq.
Since we and we’ exist in C, the relation of the distances of
we and wc' are equivalent to that from wg;g in C, which is
the orthogonal projection of wmig onto C (Fig. 5). From its
linearity, wc, wWcmid, and wg which is the projection of w®
onto C are on the line I’ which is the projection of I onto C,
and wcmiqg is the mid point of we and wg.

By the way, since the example x4 is chosen from the shad-
ow part of Fig. 2 so that the outputs of w and w"* differ,
they exist on the different sides of the hyperplane made from
Tk+1. That means that | on which w and w* exist intersects
the hyperplane w4, at a point between them. If zyy; is
perpendicular to zi,...,zk, it is easily proven that I’ and
C' intersects at the projection of the intersection point onto
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Figure 5: The relation of the Vectors

C. Even if not, we can expect that the intersection wc;, of
I' and C’ exists between wc and wg because randomly cho-
sen k vectors are almost orthogonal to each other when N is
large and k is small. Hence we assume that wg;, is between
we and wg. Since we' is the projection of we onto C' and
wein € C', the angle we-wc'-weiy is equal to 7/2 and the
angle we-wc'-wg is more than 7/2. That means wc' exists
in the ball which has the segment wc-wg as a diameter and
wemia s the center, therefore, we' is nearer to womig than
wc. So, when the assumption is satisfied, the addition of
Tr+1 accelerates the learning.

Even when p # 1 but p € [1/2,1], the same thing can be
proven by considering the internally dividing point of w and
w* with 1/2 : p — 1/2 instead of their midpoint wmia-

4. Derivation of the Optimal Block Size

In the previous section, it has been shown that the learning is
faster as the block size is larger when & is relatively small. On
the other hand, how is the convergence rate when k& is large.
In this section, we give the answer that the BOP algorithm
with the block size k¥ and that with NV — k are essentially
equivalent and have the same convergence rate under some
assumptions. .

In the consideration below, the current weight vector w has
been fixed. The complement C of the space spanned by k
examples z,...,z; distributes uniformly in some sense if
each of the k examples is chosen independently uniformly
from Sy. In practice, however, examples are chosen a part
of S4 as shown in Fig. 2 according to w and C does not
uniformly distribute. Fig. 6 is an example where N = 3,
k = 2, the thick short arrows show w* and w, and the long
arrows show the directions of C’s (vectors in this case) on S+
made from 30 pairs of z; and z2 which are randomly chosen.
We can sée from the figures that the distribution is biased as
the angle of the current and true vectors is small. The bias,
however, depends on w and is not simple when C has more
dimension. So, we assume uniformity of C in the theoretical
analysis. It means that the BOP algorithm with the block
size k symmetrically moves w to a point w! with respect to C
which is an RY ~* randomly uniformly chosen. And consider
here about the complement C* of C and a point w; which is
the symmetrical point of w with respect to C*. Obviously,
w! and w, are symmetrical with respect to the origin (Fig.
7). Noting the equivalence to choose R” ~* and R* randomly
because the whole space is R" and each is the complement
of the other, we can regard C* as the complement of the
space spanned by N — k examples, hence, the distribution of
w! moved by k examples and that of w; moved by N — k
examples are symmetrical with respect to the origin. When

c) the angle is 7/6

Figure 6: Distribution of the complement C

the points gotten by one more time of renewal are denoted by
w? and wo, respectively, their distributions perfectly coincide.

The consideration above says that the BOP algorithm with
the block size k is essentially equivalent to that with the
block size NV — k, and their convergence rates are the same.
Though Miyoshi et al. gave this result in (7], they considered
fixed patterns and assumed that such patterns exist that they
can span both a space and its complement and the probabil-
ities they are chosen are the same. Here, we have shown the
equivalence more simply by considering the distribution of
the moved parameter assuming the uniformity of C .

A

Wi

Figure 7: Relation of w! and w1 (N =3, k=2)
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Extrapolating the result in the previous section to k < N/2
and joining it and the result in this section, we can derive that
the convergence rate is maximum when k = N/2. It is inter-
esting the difference of the results in the linear dichotomies’
case and the transversal filters’ case when the convergence is
fast as the block size is large[4].

5. Computer Simulations

Computer simulations have been done to confirm the theoret-
ical result in the previous section. Though [7] has compared
the number of iterations necessary to stop using fixed exam-
ples, we evaluate how much the weight vector approaches the
true in a certain times of renewal considering that the the-
ory above discusses the movement of the weight vector and
that the learning does not stop when the given examples are
randomly chosen.

“«a "
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Figure 8: The angle of the weight vector and the true (2
times of renewal)

Fig. 8 shows the relation between the block size and the angle
the weight vector w and the true make w" after 2 times of re-
newal where the initial vector is randomly chosen so that it is
perpendicular to w*, the dimension of the weight vector is 40,
and the angle is"the average of 200 trials. It clearly confirms
the theoretical result that the convergence rate is maximum
when the block size is a half of the vector’s dimension.

0.5] "
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Figure 9: The angle of the weight vector and the true (30
times of renewal)

Fig. 9 shows the result after 30 times of renewal. When the
number of renewal increases, the optimal block size becomes
smaller than k = N/2. The reason is unknown and a future
work, though it seems that the bias of the distribution be-
comes large because the area from which examples are chosen
decreases.

Learning 1

6. Conclusion

This paper has discussed the relation of the block size and the
convergence rate of the BOP algorithm for linear dichotomies
from the geometrical point of view, has derived that the con-
vergence rate is maximum when the block size is a half of the
dimension of the weight vector and has confirmed the result
by computer simulations.

This result is contrastive to the transversal filters’ case where
the convergence becomes faster as the block size increases,
and it is interesting that the sign function which is a simple
nonlinear function gives much influence to the convergence
properties.

Finally, the result of computer simulations presents a prob-
lem why the optimal number decreases when the number of
renewal increases.
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