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Abstract—It is known that the fast Newton transver-
sal filter (FNTF) algorithms suffer from the numeri-
cal instability problem if the predictor used for extend-
ing the gain vector is calculated by using the fast RLS
(FRLS) algorithms. In order to overcome this diffi-
culty, we propose in this paper to combine the FNTF
with the order-update FRLS algorithm (we call it pre-
dictor based least squares (PLS) algorithm). Very few
tnvestigations are reported concerning the numerical
property of the PLS algorithm. In the paper, we prove
that three main instability sources encountered in both
the RLS and FRLS algorithms, including the unstable
behavior of the conversion factor, the loss of symmetry
and the loss of positive definiteness of the inverse cor-
relation matriz, do not exist in both the PLS algorithm
and the combination of the PLS and the FNTF algo-
rithm. As a result, the combination of the PLS and
the FNTF algorithm can provide a much more stable
and robust numerical performance compared with other
combinations, for ezample the FRLS or the RLS with
the FNTF algorithms.

1 Introduction

The FNTF algorithms attract many attentions
these years. The main advantage of the FNTF al-
gorithms is the fast computation of the gain vector
needed for the adaptation of the transversal filters.
Assuming the input signal to be autoregressive of
order M, where M is possible to be selected much
smaller than the order N of the adaptive filter,
then the gain vector can be extended from M to
N based on the predictor and the gain vector of
order M without sacrificing the performance. The
computational savings by using the FNTF algo-
rithms can be significant in some applications like
acoustic echo canceler, in which N is usually much
greater than M [1].

Like any other fast version of the RLS algo-
rithms, the FNTF algorithms also suffer from the
numerical instability problem, if the predictor used
for extending the gain vector is calculated by us-
ing the FRLS algorithms. The instability of the
FRLS algorithms is mainly produced by a hyper-
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bolic rotation (causing the eigenvalues to go out
of the unit circle) that has to be operated on the
backward predictor in order to obtain the recursive
equations for computing the gain vector [2],[3].-

In the FRLS algorithms, however, if we assume
that the recursions involve both order- and time-
update, then the least squares solution can be ob-
tained by using either forward or backward predic-
tor. Therefore, the stable structures of both for-
ward and backward predictors are remained. This
leads to the algorithms we called the PLS that in-
clude the forward PLS (FPLS) and the backward
PLS (BPLS) algorithms. Very few investigations
are reported in the literature concerning the nu-
merical property of the PLS algorithms. In [4], we
gave a comparative study on the numerical per-
formances of the BPLS and the RLS algorithms
and showed that the BPLS algorithm can provide
a much more stable and robust numerical perfor-
mance than that of the RLS algorithm.

In this paper, we present a numerical study on
the combination of the BPLS and the FNTF algo-
rithms. Specifically, three main instability sources
reported in both the RLS and the FRLS algo-
rithms, including the unstable behavior of the con-
version factor, the loss of symmetry and the loss of
positive definiteness of the inverse correlation ma-
trix, are investigated under a finite precision arith-
metic. First, we prove that the three instability
sources do not exist in the BPLS algorithm. Then,
the derivations are extended to the combination
of the BPLS and the FNTF algorithms and show
that no numerical problem will occur due to these
instability sources even under a finite precision im-
plementation. Finally, the validity of our investi-
gations is confirmed through computer simulations
using a variety of word-length floating-point arith-
metic.

2 Combination of BPLS and FNTF
Algorithms

The prediction part of the BPLS algorithm for
computing the gain vector is given by the following



time- and order-update recursive equations:

Ym(n) = cq(n~Dun(n) +u(n—m) (1)
Bpn(n) = ABm(n — 1) + Ym(n) ¥}, (n) (2)

Tmpa(n) = *—Bg—'f"(‘,;—”m(n) 3)

em(n) = em(n = 1) = ym(n)Ym(n)km(n) (4)
l_cm+1(n) = [k"‘o(n)}

+A£ﬁf%3[°“ﬁ_”]<@

where ¥, (n) is the backward a priori prediction er-
ror, Bm (n) is the minimum power of ¥, (1), ¢ (n)
is the tap-weight vector of the backward predictor,
Ym(n) is the conversion factor, k,, (n) is the nor-
malized gain vector and u,,(n) is the input vector.
The initial conditions for the BPLS algorithm
are as follows: At time n = 0, set cm(0) = 0,,,
Bm(0) = 6, km(0) = 0, and v,(0) = 1, where
m=.1,2,---M — 1. At each iteration n > 1, gen-
erate the first-order variables as follows:
i - u(n)
ki(n) = Yo (n-1) (6)
A<I>1(n - 1)

where @, (n) is the first-order of the correlation ma-
trix that satisfies

®,(n) = A®;(n — 1) + u?(n) (8)

where ®,(0) = 6.

As soon as the gain vector and the predictor of
order M are available, we can use the FNTF algo-
rithm to extend the gain vector from order M to
N, which can be written as [1]

k() = [ )]

m(n) =

N-M
0;
N-M-1
Yum(n — i) epu(n—i—1)
+ Z; 3B —i=1) 1 ©)
- ON_M-i-1
1 _ 1 " ()
W W@ T 2 NByn -0

The adaptive filtering is given by the following
equations:

a(n) = d(n) - wh (n — 1)un(n) (11)
wi(n) = wa(n — 1) + yw(n)kn (n)a(n) (12)

where a(n) is the a priori estimation error, d(n) is
the desired signal, wy(n) is the tap-weight vector
of the adaptive filter.
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3 Analysis of Numerical Property

There are mainly three instability sources re-
ported in the structure of the transversal adap-
tive filters, which include the unstable behavior of
the conversion factor, the loss of symmetry and
the loss of positive definiteness of the inverse cor-
relation matrix [5],(6]. In this section, numerical
analyses of these instability sources in the BPLS
and the combination of the BPLS and the FNTF
algorithms are presented. Both infinite and finite
precision arithmetic are taken into account for the
analysis.

3.1 Conversion Factor

3.1.1 BPLS algorithm: The order-update recur-
sion of the conversion factor in the BPLS algorithm
is shown by (3). Expanding this equation, we can
write

m

_ /\B;(n - 1)
Tm+1(n) = Dl: W‘h(") (13)
In infinite precision arithmetic, from (2) and (7)),
/\B;(n - 1)
< —= < < <1
0< Bin) S 1 and 0 < 71(n) < 1. So the

following relation can be obtained.
0< 7m+1(n) < 7m(n) <--- <L 71(") <1 (14)

From the derivation shown in Appendix, (14) is
also valid in finite precision implementation, Con-
sequently, the conversion factor in the BPLS algo-
rithm will never be negative or exceed unity.

3.1.2 Combination of BPLS and FNTF algo-
rithm: The extension of the conversion factor from
order M to N is shown by (10). Notice that the
first term on the right side of (10) 1/vm(n) > 1
and the second term is always greater or equal to
zero. So we have 0 < yy(n) < 1.

3.2 Symmetric Property

3.2.1 BPLS algorithm: Py, (n) in the BPLS algo-
rithm is inherently symmetric. This can be shown
by

ko (m)= 3 Pm(n = Don(n) = (1)
= + (T (m)Pr(n — 1))" (15)

Apparently, (15) is also true in finite precision im-
plementation.



3.2.2 Combination of BPLS and FNTF algo-
rithm: Rewrite the summations on the right side
of (9) as

Ipt(n = 1)un(n)

M-1 0:
cm(n—1i—1)
2 AB (n—z—l) " 1

i=0

N-

ON-_M-i-1
-[0,' cM(n —1— 1) 1 ON—M—:‘—I] . uN(n) (16)
T
Apparently, Py(n—1) = ( N(n— 1)) is satisfied
even under a finite-precision implementation. So

the symmetric property of the inverse correlation
matrix of order N is remained.

3.3 Positive Definiteness

The positive definiteness of Pp,(n — 1) can be
defined as

uZ (n)Pm(n — 1)un(n) >0 (17)

where u,,(n) # 0 is the input vector.

3.3.1 BPLS algorithm: Left multiplying (5)
by ul . ,(n) and recognizing that knpi(n) =
Pm+1(n — 1)umyi(n), we get

1
3"“£+1(")Pm+1(" = 1unyi(n)

Ym(n)
ABp(n —1)
-(uZ (n)em(n — 1) + u(n — m)) (18)
Using (1), (18) can be rewritten as

= 20T ()P m(n — 1)um(n) +

ug 11 (M) Pmyi(n = Dumis (n)

2
=l _ _Ym(n)
=u,,(n)Pm(n l)u,,‘,(n) + Bo(n=1) (19)
. P2, (n) . .
Since Bo(n— 1) is always positive, we can con-

clude that if P,,(n — 1) preserves its positive defi-
niteness, then the order-update of P, 4y (n —1) by
using (5) remains positive definite.

To analyze the positive definiteness of Py 41(n—
1) under finite-precision implementation, we ex-
pand (19) as

ul 1 (N)Prmg(n - 1)“m+1(n)
= u(n)Pi(n — 1)u(n) + Z i ('( n) o) (20)

In Appendix, we have proved that. the terms on
the right side of (20) are always greater or equal to
zero. So the nonnegative definiteness of P, 41(n —
1) is held despite finite-precision implementation.
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3.3.2 Combination of BPLS and FNTF algo-
rithm: Left multiplying (9) by uy(n), we have

uf (n)Pw(n — )un(n) = up (n)Py(n — L)up(n)

N-M-1 .
+ Y —————B'p}”("-.’) (21)

mM(n—i-1)

Following the same procedure as (20), we can prove
that the nonnegative definiteness of Py(n — 1) is
also guaranteed.

The computational load of the combination of
the BPLS and the FNTF algorithms is about
%Mz +5M+42N. Since M < N is usually satisfied
in some applications such as acoustic echo canceler,
the computation reduction can be significant.

4 Simulation Results

Computer simulations are done to confirm the
validity of our study presented in Sec.3. An adap-
tive system identification problem is employed. A
floating-point arithmetic that consists of an 8-bit
exponent and a variable mantissa (including a sign
bit) is used for the simulation. A speech signal
as shown in Fig.1(a) is used as the input. The
unknown system is supposed to be a 10-th order
butterworth IIR filter. The number of tap weights
used in the adaptive filter is 50. The initial param-
eter § = 0.1 and the forgetting factor A = 0.95 are
used.

The simulation results of three main instability
sources effects are shown in Fig.1(b)-(g). From
these results, we make the following observations:

e The conversion factors in both the BPLS and
BPLS+FNTF algorithms are always in the
range between 0 and 1 even though a low bit
mantissa is used.

e The symmetric property of Py(n — 1)
is remained in both the BPLS and the
BPLS+FNTF algorithms.

e No loss of positive definiteness in the BPLS or
the BPLS+FNTF algorithms occurs under a
finite precision implementation.

These observations have confirmed the validity
of our analysis presented in Sec.3.

Without the effects of three main instabil-
ity sources, the numerical performance of the
BPLS+FNTF algorithms is expected to be much
improved. This is virtually true through computer
simulations. Figure 2 shows the residual error of
some different combinations computed by using a
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Fig. 1. Simulation conditions: N = 50 used for BPLS
and N = 50,M = 10 used for BPLS+FNTF, 6-bit man-
tissa. (a) Input speech signal, (b),(c) Conversion fac-
tor v§(n) of BPLS and BPLS+FNTF, (d),(e) Symmetric
property of BPLS and BPLS+FNTF con}puted by using
IP%(n = Dun(n) = (uF ()Pl (n = 1)) |l (£).(g) Posi-
tive definiteness of BPLS and BPLS+FNTF computed by
using uf ()P % (n — 1)un(n).

variety of word-length mantissa bits. As expected,
the numerical performance of the BPLS + FNTF
algorithm is very robust to round-off errors pro-
duced by finite-precision implementations. On the
other hand, the FTF+FNTF algorithm is unstable
even under the double-precision implementation.

5 Conclusion

A numerical study on the combination of the
BPLS and the FNTF algorithms has been pre-
sented. Finite-precision analysis of three main in-
stability sources, including the overrange of the
conversion factor, the loss of symmetry and the
loss of positive definiteness of the inverse correla-
tion matrix, has been carried out. The validity
of the analysis has been confirmed through com-
puter simulations. It has been shown that the three
main instability do not exist in both the BPLS and
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Fig. 2. Simulation conditions: Unknown system N = 50
and changes at 500 samples. (a) RLS, N = M = 50, double
precision, (b) BPLS+FNTF, N = 50, M = 10, 8-bit man-
tissa, (c) BPLS+FNTF, N = 50, M = 10, 6-bit mantissa,
(d) FTF+FNTF, N = 50, M = 10, double precision.

its combination with the FNTF algorithms. This
leads to a much improved numerical performance.
The combined algorithm can be applied to various
fields, such as acoustic echo canceler, to provide
a fast convergence rate and a stable performance
with less computation.
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Appendix A

In finite-precision (including both floating-point
and fixed-point) arithmetic, let Q[z] denote the
quantization of  and assume that the dynamic
range for computation is large enough so that no
overflow error occurs, then from [7], the following
conclusions can be obtained:

1. f0<a<1and b>0, then 0 < Q[ab] < b
2. If ¢ is a real variable, then Q[c?] > 0.
3. fa>b>0anda#0,then0< Q¢ <1

4. If a > 0 and b > 0, then Q[Q[a] + 4] > Q[a] >
0.

Based on the above conclusions, we prove some
results shown in Sec.3. Assume that we have the
following recursive equation

a(n) = Ae(n — 1) + p(n)82(n) (A-1)

with 0 < A <1 and a(0) = 6 > 0. The implemen-
tation of (A.1) under a finite-precision arithmetic
is

a?(n) = Q@M (n - 1)] + Qlo(n)QIe*(n)]]
(A-2)
We want to prove that if p(n) > 0, then
af(n) 2 QAa’(n —1)] > 0. (A-3)

Using the mathematical induction, we first write
the initial state as

a?(1) = Q[Q[A] + Q[p(1)Q[6*(1)]]] > Q[A6] > 0.
(A-4)

Assume

a’(n —1) = Q[Qe(n — 2)] + Q[p(n — 1)
QE*(n =1l 2 QPa?(n-2)] >0 (A-5)

then we get

o (n) =Q[QDad (n — 1)] + Qlo(n) QEX(n)]]
> QPa(n - 1)) 2 0 (A-6)
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Now we prove that the conversion factor v,,(n)
computed under finite-precision arithmetic satis-
fies

0<Ympa(n) S vh(n) < -

First, to prove 0 < v{(n) < 1, we write the finite-
precision implementation of (8) as

®{(n) = Q[QM®{(n — 1)] + Q[u*(n)] (A-8)

Apparently, (A.8) is the special case of (A.2) when
p(n) = 1. Hence,

(n) 2 QPRI —1)]20  (A-9)
or from (7)

<7i(n) <1(A-7)

Q& (n —

0<7(n)=@Q 31(n) 1)]] < 1(A-10)

Then, we use (2) and write

Bi(n) = Q[Q[AB{(n — 1)] + Ql¥{ (n)Q[¥3(n)]]
(A-11)

Notice that (A.11) has the same form as (A.2). So
the following equation

QMBi(n —

1)
Bg(n) ] <1(A 12)

0 < pi(n) = Q|
is true, resulting

QI (n)ri(n)] < vi(n) < 1(A-13)

Following the same procedure, we can deduce that
Bi(n) > Q[Bf(n —1)] > 0 and hence the final
result of (A.7). .

To prove the nonnegative definiteness of
Ppyti1(n—1) in finite-precision lmplementatlon we
write (20) as

Qlul 11 (N)Pmy1(n — Dupmyq(n)]

= Q[Q[u(n)Pl (n— Du(n)] + ZQ[,\%? (f)l)”

(A-14)

For the first term on the right side of (A.14), from
(6), we have

0< 73(n) =

Qu’(n)]
[)@"( )] =1
(A-15)
For the rest terms on the right side of (A.14), we

have Q[W] > 0, Therefore, the nonnega-

tive definiteness of P,,41(n — 1) is proved.

0 < Qu(n)Pi(n — u(n)] =



