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A Low-Distortion Noise Canceller and Its Learning

Algorithm in Presence of Crosstalk
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SUMMARY This paper proposes a low-distortion noise can-
celler and its learning algorithm which is robust against crosstalk
and is applicable for continuous sounds. The proposed canceller
consists of two stages: cancellation of the crosstalk and cancella-
tion of the noise. A recursive filter reduces the number of com-
putations for noise cancellation stage. Separate filters for the
adaptation and the filtering are introduced for crosstalk cancel-
lation. Computer simulations show 10 dB improvement of the
error power.
key words: adaptive noise canceller, crosstalk, low distortion

1. Introduction

Extracting desired signals from noise-corrupted sig-
nals is important in communication systems and sound
recording. Adaptive noise cancellers (ANC’s) [1]–[8]
are widely used to reduce such noise. An ANC uses
two microphones: the primary microphone for obtain-
ing the noise-corrupted signals, and the reference mi-
crophone for capturing the noise. The noise from the
reference microphone is filtered to generate the replica
of the noise in the primary microphone output.

In ANC’s, the desired signal components captured
by the reference microphone, known as a “crosstalk [3],”
is an important problem [2]–[7]. When the crosstalk
is present, the desired signal is linearly distorted by
the desired signal components mixed in the reference
signals.

Crosstalk-resistant noise cancellers [2]–[7] have
been proposed to improve the performance of ANC’s
in presence of the crosstalk. There are three classes
of crosstalk-resistant ANC’s: cross-coupled ANC [2],
[3], ANC with pre-processing [4], and ANC with post-
processing [5]–[7]. The cross-coupled ANC’s uses two
adaptive filters for crosstalk cancellation and noise can-
cellation. The ANC with pre-processing also has two
stages for crosstalk cancellation and noise cancellation.
ANC’s with post-processing have an linear equalizer
which reduces the distortion.

Most of crosstalk-resistant ANC’s requires absence
of the desired signal for correct adaptation. Though
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such absence is natural for speech signals, desired sig-
nals will be “continuous” for music recording. Even
for speech signals, speech detectors for adaptation con-
trol is necessary and its performance affects the sound
quality. Therefore, ANC’s without such speech detec-
tion are preferable.

This paper proposes a low-distortion noise can-
celler and its learning algorithm which is robust against
crosstalk and is applicable for continuous sounds. The
cross-talk problem and some crosstalk-resistant noise
cancellers are reviewed in Sect. 2. Section 3 derives a
new low-distortion algorithm followed by the computer
simulations.

2. Crosstalk in Noise Cancellation

2.1 Classical Noise Canceller

Figure 1 depicts a classical noise canceller [1] in the
presence of a crosstalk. A desired signal S(z) propa-
gates the acoustic path H4(z) and reaches the primary
microphone “Mic1.” A noise V (z) via H1(z) is mixed
at Mic1 and generates the primary signal D(z). The
reference microphone “Mic2” captures the noise V (z)
via H2(z) to output the reference signal X(z). The
adaptive filter W (z) generates the replica of the noise.
Subtracting the replica from the primary signal cancels
the noise.

This noise canceller works fine if no desired sig-
nals are mingled with the noise in the reference signal.
However, S(z) reaches Mic2 via H2(z) and causes the
distortion of the desired signal [2]–[7]. In the presence
of the crosstalk, the calnceller output E(z) is given by

E(z) = {H4(z)− H3(z)W (z)}S(z)

Fig. 1 Classical noise canceller in presence of crosstalk.
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Fig. 2 Cross-coupled noise canceller.

Fig. 3 Noise canceller with pre-processing.

+ {H1(z)− H2(z)W (z)}V (z). (1)

It is obvious that there are no solution for W (z) which
generates the optimum output H4(z)S(z). To reduce
the signal distortion caused by the crosstalk, several
noise cancellers has been proposed [2]–[7].

2.2 Cross-Coupled Noise Canceller

A cross-coupled structure [2], [3] shown in Fig. 2 con-
sists of two adaptive filters. The adaptive filter W1(z)
cancels S(z) in X(z) while W2(z) reduces the noise
V (z) in D(z). The drawback of this structure is the
adaptation control [2]. Simultaneous adaptation of
W1(z) and W2(z) might causes performance degrada-
tion. A practical solution for intermittent signals such
as a speech is updating W2(z) only when S(z) is absent.

2.3 Noise Canceller with Pre-Processing

In the noise canceller with pre-processing [4] shown in
Fig. 3, the adaptive filters W1(z) and W2(z) identify
the paths H1(z) and H3(z), respectively. W2(z) also
reduces S(z) in X(z). Finally, the filter F1, which uses
the same filter coefficients as W1(z), cancels the noise.
This canceller also requires adaptation control based
on the absence of S(z); W1(z) is updated when S(z) is
absent.

2.4 Noise Canceller with Post-Processing

Another class of noise cancellers use a post-processing
to reduce the distortion [5]–[7]. Figure 4 depicts sim-
plified block diagram. Since the distortion process is
linear and is a combination of Hi(z)’s (i = 1, · · · , 4),

Fig. 4 Noise canceller with post-processing.

Fig. 5 Basic block diagram of proposed noise canceller.

a linear equalizer can reduce the distortion. Some of
these noise cancellers still requires adaptation control
based on the absence of S(z) [5].

3. Proposed Noise Canceller

3.1 Assumptions

Before deriving the algorithm, let us assume the follow-
ings.

1. both S(z) and V (z) are continuous sounds.
2. S(z) and V (z) are independent each other.
3. H1(z) has a longer delay than that of H2(z).
4. H3(z) has a longer delay than that of H4(z).
5. Correlation between H1(z)V (z) and H2(z)V (z) is

negligible.

Because of the first assumption, many conventional al-
gorithms are difficult to be applied though it is natural
for music recording in a noisy environment. The third
and fourth assumptions will be valid if Mic1 and Mic2
are located near the sound source and the noise source,
respectively. The fifth assumption is also valid if Mic2
is located near the noise source. The influence of as-
sumptions 4 and 5 will be discussed by using simulation
results.

3.2 Basic Structure

Figure 5 depicts the basic block diagram of the pro-
posed noise cacneller. It consists of two stages: can-
cellation of the desired signal S(z) mixed in X(z) and
cancellation of the noise V (z) in D(z). The first stage
consists of the adaptive filter W1(z), which cancels S(z)
in X(z). Thus the reference signal for the second stage
E1(z) is generated. In the second stage, V (z) in D(z)
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is canceled by W2(z) using E1(z).
The reference signal for the second stage E1(z) and

the canceller output E(z) are calculated by

E1(z) = {H3(z)− H4(z)W1(z)}S(z)
+ {H2(z)− H1(z)W1(z)}V (z) (2)

and

E(z) = {H4(z)− (H3(z)
− H4(z)W1(z))W2(z)}S(z)
+ {H1(z)− (H2(z)
− H1(z)W1(z))W2(z)}V (z). (3)

From the optimum output E(z) = H4(z)S(z), the opti-
mum transfer functions for the adaptive filters W opt

1 (z)
and W opt

2 (z) are derived as

W opt
1 (z) =

H3(z)
H4(z)

(4)

and

W opt
2 (z) =

H1(z)
H2(z)− H1(z)W1(z)

=

H1(z)
H2(z)

1− W1(z)
H1(z)
H2(z)

, (5)

respectively. Note that W opt
1 (z) will cancel S(z) com-

ponent from X(z).

3.3 Realization of W2(z) by Recursive Filter

The optimum transfer function for W2(z) shown in (5)
suggests some difficulties on the adaptation and the im-
plementation. Since W opt

2 (z) consists of W1(z), W2(z)
should track the change of W1(z) as well as learn the
room acoustics. The recursive form of (5) might results
in the huge number of taps for W2(z).

To reduce such difficulties, a recursive filter shown
in Fig. 6 is introduced. The transfer function of the
recursive filter is given by

W2(z) =
W ′

2(z)
1− W1(z)W ′

2(z)
. (6)

Comparing (5) and (6) leads us to the optimum transfer

Fig. 6 Implementation of W opt
2 (z) by recursive filter.

function of W ′
2(z) as

W ′opt
2 (z) =

H1(z)
H2(z)

. (7)

Note that W ′opt
2 (z) is independent of W1(z) and is the

same as that for the classical noise canceller shown in
Fig. 1.

The recursive form of (6) involves stability prob-
lem. A proof for the stability and adaptation algo-
rithms which ensures the stability should be future
study.

3.4 Adaptation of W1(z)

The convergence value of W1(z) will be analyzed in the
time domain to clarify the problem for adapting AF1.
The primary signal d(n) and the reference signal x(n)
at the time index n are given by

d(n) = hT
1 v(n) + hT

4 s(n) (8)

and

x(n) = hT
2 v(n) + hT

3 s(n), (9)

respectively. The vectors hi (i = 1, · · · , 4) are the im-
pulse responses corresponding to Hi(z) and are defined
by

hi =




NH︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

NDi

hi,0 · · · hi,NHi−1




T

(i = 1, 3)

(10)

hi =




NH︷ ︸︸ ︷
hi,0 · · · hi,NHi−1 0 · · · 0︸ ︷︷ ︸

NDi




T

(i = 2, 4).

(11)

NHi is the length of a non-zero section in hi, while NDi

is the that of a flat-delay section. NH is the dimension
of hi and is equal to NHi + NDi. s(n) and v(n) are
the desired signal vector and the noise vector which are
defined by

s(n) = [s(n) · · · s(n − NH + 1)]T (12)

and

v(n) = [v(n) · · · v(n − NH + 1)]T , (13)

respectively. [·]T denotes the transpose of a matrix [·].
The AF1 output y1(n) is calculated by

y1(n) = wT
1 (n)d(n)

(14)

where w1(n) is the filter coefficients of AF1 defined by
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w1(n) = [w1,0(n) · · · w1,NW1−1(n)]
T

, (15)

d(n) is the primary signal vector defined by

d(n) = [d(n) · · · d(n − NW1 + 1)]T . (16)

NW1 is the number of taps for AF1. Using s(n) and
v(n), y1(n) is re-written as

y1(n) = wT
1 (n){HT

1 v
′(n) +HT

4 s
′(n)} (17)

where s′(n) and v′(n) are the desired signal vector and
the noise vector defined by

s′(n) = [s(n) · · · s(n − NW1 − NH + 2)]T (18)

and

v′(n) = [v(n) · · · v(n − NW1 − NH + 2)]T , (19)

respectively. The difference between s(n) and s′(n) is
the vector length. Matrices Hi defined by

Hi =


 hi 01 · · · 0NW1−2 0NW1−1

hi · · · hi

0NW1−1 0NW1−2 · · · 01 hi




(20)

contains a vector hi and corresponds to the convolution
of hi and its input. 0i is an i-th order zero vector.
Multiplying each row vector of Hi by the input vector
results in an output sample from a filter hi.

The error e1(n) for AF1 is generated by

e1(n) = x(n)− y1(n). (21)

By taking the ensemble average, E[e2
1(n)] becomes

E[e2
1(n)] = E[x2(n)]−2E[x(n)y1(n)]+E[y2

1(n)].
(22)

The second term of (22) is further calculated as

E[x(n)y1(n)] = hT
3 E[s(n)s′(n)]H4w1(n)
+ hT

3 E[s(n)v′(n)]H1w1(n)
+ hT

2 E[v(n)s′(n)]H4w1(n)
+ hT

2 E[v(n)v′(n)]H1w1(n)
= hT

3 Rss′H4w1(n)
+ hT

2 Rvv′H1w1(n). (23)

Cross correlations E[s(n)v′(n)] and E[v(n)s′(n)] are
equal to zero because of the assumption 2. From the as-
sumption 5, hT

2 Rvv′H1, which corresponds to the corre-
lation between H1(z)V (z) and H2(z)V (z), is also zero.
Thus E[x(n)y1(n)] becomes

E[x(n)y1(n)] = hT
3 Rss′H4w1(n). (24)

Similarly,

E[y2
1(n)] = w1(n)HT

1 Rv′v′H1w1(n)
+w1(n)HT

4 Rs′s′H4w1(n) (25)

is derived for E[y2
1(n)].

The convergence value of AF1 w1(∞) is derived
from

∂E[e2
1(n)]

∂w1
= 2

(
HT

1 Rv′v′H1 +HT
4 Rs′s′H4

)
w1(n)

−2hT
3 Rss′H4 = 0. (26)

The convergence value is calculated as

w1(∞) =
(
HT

1 Rv′v′H1 +HT
4 Rs′s′H4

)−1
hT

3 Rs′s′H4.

(27)

The optimum value wopt
1 is derived by equating v(n) to

zero and is given by

wopt
1 (∞) =

(
HT

4 Rs′s′H4

)−1
hT

3 Rs′s′H4, (28)

which corresponds to H3(z)/H4(z).
Obviously, the convergence value (27) is differ-

ent from the optimum value (28). The difference is
HT

1 Rv′v′H1 in the inverse matrix, which corresponds
to the auto-correlation of the noise component v(n) in
the primary input d(n). Thus the noise component v(n)
in d(n) disturbs the adaptation of AF1.

The influence of v(n) in d(n) will be significant
if the noise v(n) is wide-band, or if v(n) is large in
the frequency range where s(n) is dominant. On the
other hand, the influence of v(n) is negligible if v(n) is
small in the frequency range where s(n) is dominant.
A narrow-band noise corresponds to a latter case.

3.5 Proposed Structure

For correct adaptation, AF1 should be updated by us-
ing a reference input which contains less v(n) compo-
nent than d(n). Thus AF1 is divided into two filters:
an adaptive filter to update w1(n) and a digital filter
to generate y1(n) from d(n) using w1(n). To update
w1(n), e(n) is used as the reference input rather than
d(n).

Figure 7 shows the block diagram of the proposed
noise canceller. It consists of two adaptive filters, AF1
and AF2, and two filters, F1 and F2. Two filters F1 and
F2 use the same coefficients as AF1. To ensure correct
convergence of W1(z), AF1 uses E(z) as its reference

Fig. 7 Proposed noise canceller.
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input rather than D(z). Since E(z) contains less noise
components, the influence of V (z) on the convergence
of W1(z) is reduced. The recursive structure shown in
Fig. 6 is used as AF2.

The canceller output E(z) is calculated as

E(z) =
{

H4(z)−
(H3(z)− H4(z)W1(z))W ′

2(z)
1− W1(z)W ′

2(z)

}
S(z)

+
H1(z)− H2(z)W ′

2(z)
1− W1(z)W ′

2(z)
V (z). (29)

From (29), it is easy to show that the optimum trans-
fer functions are (4) and (5). The noise V (z) can be
canceled regardless of W1(z).

The error E′(z) for AF1 is given by

E′(z) = X(z)− W1(z)E(z)

=
H3(z)− H4(z)W1(z)
1− W1(z)W ′

2(z)
S(z)

+
H2(z)− H1(z)W1(z)
1− W1(z)W ′

2(z)
V (z). (30)

After convergence of W ′
2(z) to its optimum value, E′(z)

becomes

E′(z) = X(z)− W1(z)E(z)

=
H3(z)− H4(z)W1(z)
1− W1(z)W ′

2(z)
S(z) + H2(z)V (z).

(31)

Only S(z) component in E′(z) can be manipulated by
W1(z). Therefore, W1(z) can be updated free from the
influence of V (z) in D(z).

3.6 Number of Computations

Number of computations for some algorithms are com-
pared. Table 1 shows the number of multiplications
for the LMS algorithm [1]. The proposed algorithm re-
quires 2NW1 multiplications for AF1, 2NW2 for AF2,
NW1 for F1, and NW1 for F2. NW2 is the number
of taps for AF2. Though removing the recursive fil-
ter F2 (without IIR) seems to reduce the number of
computations, it will cause the increase of NW2 as sug-
gested in Sect. 3.3. The effects of removing F2 on the
performance and on NW2 will further be examined by
computer simulations.

The proposed ANC seems to require more number
of computations than that of conventional crosstalk-
resigtant ANC’s. However, speech detection required
for conventional ANC’s is not included in Table 1.

Table 1 Number of computations.

Algorithm Number of Multiplications
Conventional 2NW + 1
Cross-Coupled 4NW + 2
Pre-Processing 3NW1 + 2NW2 + 2

Proposed 4NW1 + 2NW2 + 2
without IIR 3NW1 + 2NW2 + 2

4. Computer Simulations

Simulations have been carried out to show the perfor-
mance of the proposed noise canceller. In the simula-
tions, the error power EP (n) defined by

EP (n) =
∑499

i=0 |ds(n − i)− e(n − i)|2∑499
i=0 |ds(n − i)|2

, (32)

the residual noise RN(n) defined by

RN(n) =
∑499

i=0 |ev(n − i)|2∑499
i=0 |ds(n − i)|2

, (33)

the signal distortion SD(n) defined by

SD(n) =
∑499

i=0 |ds(n − i)− es(n − i)|2∑499
i=0 |ds(n − i)|2

, (34)

have been compared. ds(n) is the signal component in
d(n) and is given by

ds(n) = hT
4 s(n). (35)

Note that ds(n) is the optimal output of the noise can-
celler. es(n) and ev(n) are the signal component and
the noise component in the output e(n), respectively.
es(n) corresponds to the first term of (29), while ev(n)
corresponds to the second term. The convergence value
of W1(z) has also been compared to examine the con-
vergence of AF1.

Performance for both white-noise and colored noise
have been evaluated. The colored signals have been
generated by second-order autoregressive (AR) models.
The frequency responses of the AR models are depicted
by Fig. 8. For AR signals, V (z) is small in the frequency
range where S(z) is dominant. On the contrary, V (z)
is large in the frequency range where S(z) is dominant
for the white-noise case.

These evaluations will also confirm the influence of
the noise component V (z) in the primary input D(z) on
the adaptation of W1(z), which is analyzed in Sect. 3.4.
For the white-noise case, the analysis shows that the

Fig. 8 AR model for colored signals.
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Fig. 9 Frequency responses of unknown systems.

adaptation of W1(z) using D(z) would be affected by
V (z). On the contrary, the performance would be inde-
pendent of the adaptation of W1(z) for the AR signals
shown in Fig. 8. These facts suggest that a noise can-
celler which updates W1(z) using D(z) would work fine
for these AR signals, but not for white signals.

Figure 9 shows the frequency responses of the un-
known systems. H1(z) and H2(z) are second-order But-
terworth low-pass filters (LPF’s) with the cut-off fre-
quencies of 0.4 and 0.6, respectively. H3(z) is a third-
order Butterworth LPF with the cut-off frequency of
0.9. H4(z) = 1. H1(z) and H3(z) also contain flat delay
sections. The delay length ND1 and ND3 are 30, which
corresponds to 1.28m distance for 8 kHz sampling.

The performance of the classical noise canceller
shown in Fig. 1 (Conventional) and the proposed noise
canceller (Proposed) are compared. Low-distortion al-
gorithms which depend on the absent of S(z) are not
examined because they are not applicable for continu-
ous sounds. In order to evaluate the effect of recursive
structure, the proposed noise canceller using an FIR
adaptive filter as AF2 (without IIR) and a longer-tap
version (without IIR, NW2 = 128) are also compared.
The performance of the proposed noise canceller which
updates AF1 using D(z) as in Fig. 5 (AF1 using D(z))
shows the influence of V (z) in D(z) on the adaptation
of AF1.

As the adaptive filters, FIR adaptive filters based
on the normalizes LMS algorithm (also known as learn-
ing identification method) [9] are used. The number of
taps for AF1 and AF2, NW1 and NW2, are chosen as 64

except for specially mentioned. The adaptation step-
size for both AF1 and AF2 is 0.01.

Figure 10(a) compares the the error power EP (n)
for a white-noise case. The proposed algorithm im-
proves the error power by almost 10 dB compared with
the conventional algorithm. The performance is de-
graded by removing the recursive part, or by changing
the adaptation of AF1.

Figure 10(b) shows the residual noise component
RN(n) in EP (n). From RN(n), the effect of the re-
cursive structure is clear. Without the recursive part,
RN(n) becomes almost 10 dB larger. Though increas-
ing NW2 improves the residual noise level, the conver-
gence speed becomes slow. Furthermore, the number
of computations for NW2 = 128 without recursive part
is larger than that for proposed method as shown in
Table 1. RN(n) is not affected by the adaptation of
AF1.

As demonstrated by Fig. 10(c), the adaptation of
AF1 has a great role on the signal distortion SD(n).
By changing the adaptation of AF1, SD(n) is improved
by 8 dB. The structure of AF2 has no influence on the
signal distortion. Though increase of NW2 seems to
improve SD(n), this is because of the slow convergence;
the signal distortion is small if W2(z) is almost zero.

Figure 10(d) compares the convergence value of
W1(z), which affects the signal distortion. By the pro-
posed method, W1(z) converges closer to the optimum
than that using D(z).

Figure 11 compares the simulation results for col-
ored signals. In this simulation, the frequency of the
signal S(z) and the noise V (z) is different. Therefore,
the adaptation of AF1 has almost no influence on the
performance. For both algorithms, W1(z) converges to
the optimum value where the signal S(z) is dominant.

In order to evaluate the performance when assump-
tions 4 and 5 are not valid, the relation between the
delay ND3 of H3(z) and the error power NP (z) has
been examined. The relation between ND3 and NP (z)
is shown in Fig. 12. If AF1 is adapted using D(z), ND3

should be longer than 20 samples for NP (n) less than
−20 dB. By updating AF1 using E(z), NP (n) is almost
−25 dB when ND3 is longer than 2 samples. Thus re-
quirements on ND3, i.e. limitations on the microphone
arrangement, can be alleviated.

In all simulations shown above, the recursive filter
in the proposed noise canceller is stable. Simulations
for other signals, noises and transfer functions also show
no stability problem.

5. Conclusion

A low-distortion noise canceller and its learning al-
gorithm has been proposed which is robust against
crosstalk and is applicable for continuous sounds. The
proposed canceller consists of two stages: cancellation
of the desired signal from the reference signal, and can-
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(a) Normalized Error

(b) Residual Noise

(c) Signal Distortion

(d) W1(z)

Fig. 10 Simulations for white-noise input.

(a) Normalized Error

(b) Residual Noise

(c) Signal Distortion

(d) W1(z)

Fig. 11 Simulations for colored input.
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Fig. 12 Relation between ND3 and error power.

cellation of the noise. A recursive filter reduces the
number of computations for noise cancellation stage.
Separate filters for the adaptation and the filtering are
introduced for desired signal cancellation. Computer
simulations show that the proposed noise canceller im-
proves the error power by almost 10 dB. The stability
of the recursive filter, the uniqueness of the adaptive fil-
ters, evaluation in real environments should be future
study.
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