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SUMMARY This paper proposes an alternative learning algorithm for
a stereophonic acoustic echo canceller without pre-processing which can
identify the correct echo-paths. By dividing the filter coefficients into
the former/latter parts and updating them alternatively, conditions both for
unique solution and for perfect echo cancellation are satisfied. The learn-
ing for each part is switched from one part to the other when that part con-
verges. Convergence analysis clarifies the condition for correct echo-path
identification. For fast and stable convergence, a convergence detection
and an adaptive step-size are introduced. The modification amount of the
filter coefficients determines the convergence state and the step-size. Com-
puter simulations show 10 dB smaller filter coefficient error than those of
the conventional algorithms without pre-processing.
key words: stereophonic acoustic echo canceller, pre-processing

1. Introduction

Echo cancellers are used to reduce echoes in a wide range
of applications, such as TV conference systems and hands-
free telephones. To realistic TV conferencing, multi-
channel audio, at least stereophonic, is essential. For stereo-
phonic teleconferencing, stereophonic acoustic echo can-
cellers (SAEC’s) [1]–[13] have been studied.

SAEC’s have a fundamental problem in which their
filter coefficients cannot have a unique solution [1]–[5].
Though SAEC’s with pre-processing [6]–[10] are good can-
didates for solving this problem, audible sound distortion
caused by the pre-processing arises. An SAEC without pre-
processing, XM-NLMS algorithm [11], has also been pro-
posed. Though the XM-NLMS converges faster than a stan-
dard SAEC [1], its convergence at the optimum coefficient
is not confirmed.

This paper proposes a stereophonic acoustic echo can-
celler without pre-processing. Section 2 reviews the SAEC
and its fundamental problem. An SAEC without pre-
processing, its convergence analysis and adaptation control
are presented in Sect. 3. Computer simulation results show
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the performance of the proposed algorithm.

2. Uniqueness Condition for Stereophonic Acoustic
Echo Canceller

Figure 1 shows a teleconferencing using an SAEC. This
echo canceller consists of four adaptive filters correspond-
ing to four echo paths from two loudspeakers to two mi-
crophones. Each adaptive filter estimates the corresponding
echo path.

The far-end signal xi(n) in the i-th channel at time index
n is generated from a talker speech s(n) by passing room A
impulse response gi from the talker to the i-th microphone.
xi(n) passes an echo path hi, j from the i-th loudspeaker to the
j-th microphone and become an echo dj(n). Similarly, adap-
tive filters wi, j(n) generates an echo replica y j(n). wi, j(n) is
so updated as to reduce the residual echo e j(n)

SAEC’s have a fundamental problem in which their fil-
ter coefficients cannot have a unique solution [1]. SAEC’s
may have infinite number of solutions other than the opti-
mum solution wi, j(n) = hi, j.

Further analyses show that SAEC’s may have a unique
and optimum solution when the number of taps NW for
SAEC and the impulse response length NA in room A sat-
isfy NW < NA [5], [10]. For echo cancellation performance,
NB ≤ NW is preferable where NB is the impulse response
length in room B. Therefore, if NB ≤ NW < NA, SAEC in
room B achieves both perfect echo cancellation and opti-
mum solution. Such a condition, however, cannot be satis-
fied for SAEC’s in both room A and B.

Fig. 1 Teleconferencing using SAEC.
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3. Correct Echo-Path Identification without Pre-
Processing

3.1 Algorithm

In order to satisfy the uniqueness condition for both SAEC’s
in room A and room B, the number of taps for SAEC NW is
so chosen as to satisfy NW/2 < NA ≤ NW and NW/2 < NB ≤
NW . If the size of both rooms are similar, which is usual
case, such NW may exist. In adaptation, NW/2 taps are up-
dated at a time; thus the effective number of taps for SAEC
NW/2 is smaller than the impulse response length in the far-
end room NA. To avoid the performance degradation caused
by the tap shortage, another NW/2 taps will also update at
the other time.

The filter coefficient vector wi, j(n) is divided into two
sub-vectors wi, j, f (n) and wi, j,b(n) shown by

wi, j, f (n) = [wi, j,0(n), · · · , wi, j,NW/2−1(n)]T (1)

wi, j,b(n) = [wi, j,NW/2(n), · · · , wi, j,NW−1(n)]T . (2)

In the first stage, wi, j, f (n) is updated while wi, j,b(n) is fixed.
This stage is repeated until wi, j, f (n) converges. As the sec-
ond stage, wi, j,b(n) is updated while wi, j, f (n) is fixed. This
stage is also repeated until wi, j,b(n) converges. These two
stages are repeated one after another.

3.2 Convergence Analysis

Convergence of the averaged filter coefficients has been an-
alyzed. First, convergence of wi, j, f (n) when wi, j,b(n) is fixed
as an initial value wi, j,b(0) is analyzed. Convergence of
wi, j,b(n) can be derived in the same manner as wi, j,b(n).

The far-end signal on i-th channel xi(n) is derived as

xi(n) = gT
i s(n) (3)

where the talker speech vector s(n) and the impulse response
vector gi are defined by

gi = [gi,0, gi,1, · · · , gi,NA−1]T (4)

s(n) = [s(n), · · · , s(n − NA + 1)]T . (5)

[]T denotes the transpose of []. The echo dj(n) and the echo
replica y j(n) are calculated as

dj(n) =
2∑

i=1

{hT
i, j, f xi, f (n) + hT

i, j,bxi,b(n)} (6)

y j(n) =
2∑

i=1

{wT
i, j, f (n)xi, f (n) + wT

i, j,b(0)xi,b(n)}. (7)

hi, j, f , hi, j,b, xi, f (n) and xi,b(n), are defined as

hi, j, f = [hi, j,0, · · · , hi, j,NW/2−1]T (8)

hi, j,b = [hi, j,NW/2, · · · , hi, j,NW ]T (9)

xi, f (n) = [xi(n), · · · , xi(n − NW/2 + 1)]T (10)

xi,b(n) = [xi(n − NW/2), · · · , xi(n − NW)]T , (11)

which are sub-vectors of hi, j and x j(n).
By using (3), the residual echo e j(n) is calculated by

e j(n) =
2∑

i=1

{hi, j, f − wi, j, f (n)}T Gi, f s f (n)

+

2∑
i=1

{hi, j,b − wi, j,b(0)}T Gi,bsb(n). (12)

s f (n), sb(n − NW) are defined by

si, f (n) = [s(n), · · · ,
s(n − NW/2 − NA + 1)] (13)

si,b(n) = [s(n − NW/2), · · · ,
s(n − NW − NA + 1)]. (14)

Gi,p is a matrix defined by (15), which contains gi and per-
forms convolution between si,p(n) and gi,p, where p is either
b or f . By introducing vectors and matrices defined by

d f (n) =
[

h1, j, f − w1, j, f (n)
h2, j, f − w2, j, f (n)

]
(16)

db(n) =
[

h1, j,b − w1, j,b(n)
h2, j,b − w2, j,b(n)

]
(17)

G f =

[
G1, f

G2, f

]
(18)

Gb =

[
G1,b

G2,b

]
, (19)

simplified result for e j(n), i.e.,

e j(n) = dT
f (n)G f s f (n) + dT

b (0)Gbsb(n) (20)

is derived.
Taking an ensemble average of e j(n) leads us to

E[e2
j (n)] = E[e j(n)eT

j (n)]

= dT
f (n)Q f d f (n) + dT

b (0)Qbdb(0)

+ 2dT
f (n)Q f bdb(0) (21)

where

R f = s f (n)sT
f (n) (22)

R f b = s f (n)sT
b (n) (23)

Rb = sb(n)sT
b (n) (24)

Q f = G f R f GT
f (25)

Q f b = G f R f bGT
b (26)

Qb = GbRbGT
b (27)

and d f (n) denotes an average of d f (n). From

∂ E[e2
j (n)]

∂d f (n)
= 2Q f d f (n) + 2Q f bdb(0) = 0, (28)

the averaged filter coefficient error d∗f which minimizes



1960
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.8 AUGUST 2004

Gi,p =



gi,p,0 gi,p,1 · · · gi,p,NA−1 0 · · · · · · 0

0 gi,p,0 gi,p,1 · · · gi,p,NA−1
. . .

...
...

... 0
. . .

. . . · · · . . .
. . .

...
...

...
. . .

. . .
. . . · · · . . . 0

0 · · · · · · 0 gi,p,0 gi,p,1 · · · gi,p,NA−1


︸�������������������������������������������������������������������������������������︷︷�������������������������������������������������������������������������������������︸

NW/2 + NA − 1


NW/2 (15)

p = f or b

E[e2
j (n)] is determined as

d∗f = −Q−1
f Q f bdb(0). (29)

Therefore, the filter coefficients will converge on[
w1, j, f (∞)
w2, j, f (∞)

]
=

[
h1, j, f

h2, j, f

]

+ Q−1
f Q f b

[
h1, j,b − w1, j,b(0)
h2, j,b − w2, j,b(0)

]
. (30)

The first term in the right hand side is the optimum solution.
The second term is the error caused by the tap shortage. Re-
sults for wi, j,b(n) becomes

d∗b = −Q−1
b QT

f bd f (0) (31)

which can be derived by the same manner as for wi, j, f (n).
By updating wi, j, f (n) until convergence, the coefficient

error d(1)
f for wi, j, f (n) converges at

d(1)
f = −K f d(0)

b (32)

where K f is defined by

K f = Q−1
f Q f b. (33)

Then updating wi, j,b(n) with the initial coefficient error d(1)
f

for wi, j, f (n), the coefficient error d(1)
b for wi, j,b(n) converges

at

d(1)
b = −Kbd(1)

f = KbK f d(0)
b (34)

where Kb is defined by

Kb = Q−1
b QT

f b. (35)

By repeating these processes once more, d(2)
f and d(2)

b are
calculated as

d(2)
f = −K f d(1)

b = −K f KbK f d(0)
b (36)

d(2)
b = −Kbd(2)

f = (KbK f )
2d(0)

b . (37)

Finally,

d(m)
f = −K f (KbK f )

m−1d(0)
b (38)

d(m)
b = (KbK f )

md(0)
b (39)

are obtained.
The conditions in which the filter coefficients converge

at the optimum value are the followings.

1. The inverse matrices Q−1
f and Q−1

b exist.
2. The maximum absolute eigenvalue of KbK f is less than

1.

The first condition is similar to the uniqueness condition
discussed in [5], [10]. To satisfy this, the matrices R f and
Rb should have their inverse. Also, G f and Gb should have
pseudo-inverse. R−1

f and R−1
b always exist because R f and

Rb are the auto-correlation matrices.
A neccesary condition for existence of pseudo-inverse

is NW/2 < NA, which is assumed in this algorithm. The
neccesary and sufficient condition is rankG f = rankGb =

NW/2. This condition might hold if g1 and g2 sufficiently
differ.

In order to examine the condition on eigenvalue of
KbK f , let up rewite the matrices Q f , Qb and Q f b. By in-
troducing vectors

x f (n) =
[

x1, f

x2, f

]
(40)

xb(n) =
[

x1,b

x2,b

]
, (41)

Q f , Qb and Q f b becomes

Q f = G f R f GT
f = E[x f (n)xT

f (n)] (42)

Qb = GbRbGT
b = E[xb(n)xT

b (n)] (43)

Q f b = G f R f bGT
b = E[x f (n)xT

b (n)]. (44)

The matrices Q f and Qb are the auto-correlation of x f (n) and
xb(n), respectively. Similarly, Q f b is the cross-correlation
between x f (n) and xb(n). Note that these matrices include
inter-channel correlation.

Using (42), (43) and (44), KbK f becomes

KbK f = Q−1
b Q f bQ−1

f Q f b

= E[xb(n)xT
b (n)]−1E[x f (n)xT

b (n)]

· E[x f (n)xT
f (n)]−1E[x f (n)xT

b (n)]. (45)

Thus, KbK f is square of the cross-correlation Q f b multiplied
by the inverse of the auto-correlation Q f and Qb. Intuitively,
the eigenvalues of KbK f might not be so large bacause the
auto-correlation is larger than the cross-correlation.
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3.3 Adaptation Control

In this approach, the adaptation control is important. To
identify the echo path, each stage should be terminated when
the filter coefficients converge. This causes two problems:
selection of the switching interval between two stages and a
random walk around the convergence value.

An adaptive step-size and a convergence detection are
introduced for fast convergence with a small computational
cost. The adaptive step-size and the convergence detection
are carried out based on the coefficient modification amount
defined by

Dj(m) =

∑2
i=1 ‖wi, j,p(mK) − wi, j,p((m − 1)K)‖2∑2

i=1 ‖wi, j,p(mK)‖2 (46)

where i and j are the channel index for the loudspeaker and
the microphone in the near-end room, respectively. p is ei-
ther f or b. To avoid the increase of the computational cost,
(46) is calculated once in a K iterations. Coefficient adapta-
tion is stopped when (46) is calculated.

Figure 2 demonstrates an example of coefficient mod-
ification amount Dj(m). Dj(m) decreases until the filter
coefficients converge. After convergence, Dj(m) walks up
and down caused by a random walk around the convergence
value. Therefore, the filter coefficients are considered to be
converged if Dj(m − 1) < Dj(m) is satisfied. The step-size
is controlled by

µ j(m) = µmax f

(
Dj(m)

Dj,max

)
(47)

where Dj,max is the maximum value of Dj(m) in the same
stage. Usually, Dj(1) is used as the Dj,max. µ j(n) is used
within mK < n < (m+1)K. f (x) is a monotonically increas-
ing function of x. An example is

µ j(m) = µmax

(
Dj(m)

Dj,max

)α
(48)

where α is a constant. The step-size µ j(m) in (48) is used for

Fig. 2 An example of coefficient modification amount.

both wi, j, f and wi, j,b.
An overview of the adaptation control is as follows:

1. Update filter coefficients with µ j(0) = µmax for the first
K iterations.

2. Calculate Dj(1). Dj.max = Dj(1).
3. Update filter coefficients with µ j(m) controlled by (48)

for the next K iterations.
4. Calculate Dj(m).
5. If Dj(m − 1) < Dj(m), then proceed to the next stage.
6. If Dj,max < Dj(m), then Dj,max = Dj(m).
7. Goto 3.

4. Computer Simulations

Simulations have been carried out to show the performance
of the proposed algorithm. The simulation conditions and
parameters in Table 1 are used, except for specially noted
cases. Far-end room impulse responses gi are 60-tap FIR
filters (NA = 60) while those for near-end room hi, j are 64-
tap FIR filters (NB = 64). In this case, SAEC’s do not have
an unique solution. Adaptive filters are 64-tap FIR filters
(NW = 64). In this case, the condition for echo-path iden-
tification NW/2 < NA ≤ NB is satisfied. White Gaussian
signals are used as a talker signal and an additive noise. The
echo-to-noise ratio (ENR) is 60 dB.

As an adaptation algorithm, Normalized Least Mean
Squares (NLMS) algorithm [14] is used. The proposed algo-
rithm is compared with the standard SAEC [1] and the XM-
NLMS algorithm [11]. For XM-NLMS, smaller step-size is
also used because of the stability. As a performance mea-
sure, the normalized coefficient error (NCE) and the echo
return loss enhancement (ERLE) defined by

NCE(n) =

∑2
i=1 ‖wi, j(n) − hi, j‖2∑2

i=1 ‖hi, j‖2
(49)

ERLE(n) =

∑9999
k=0 d2

j (n − k)∑9999
k=0 e2

j (n − k)
(50)

are used. The ERLE is time-averaged over 10000 samples.
To show the effect of the adaptive step-size and adap-

tive interval, several combinations are compared in addition

Table 1 Simulation conditions.

Parameters

NA 60
NB, NW 64

Fixed switching interval 20000
Averaging interval 10000

K 4000
Adaptation algorithm NLMS

Fixed step-size 1.0

Variable step-size µmax

(
D j(m)
D j,max

)1/4

µmax 1.0
Far-end talker signal s(n) White Gaussian

Additive noise White Gaussian, ENR=60 dB
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Table 2 Adaptation control methods.

Name Step-size Interval Averaging K

Proposed Adaptive Adaptive No 4000
Reference 1 Fixed Fixed Yes 5000
Reference 2 Adaptive Adaptive Yes 5000
Reference 3 Fixed Adaptive Yes 5000
Reference 4 Fixed Adaptive No 4000

(a) NCE

(b) ERLE

Fig. 3 NCE and ERLE for some adaptation control methods.

to the proposed method. Adaptation control methods are
shown in Table 2. In some combinations, time-averaging
of the filter coefficients is introduced in order to supress an
influence of a random walk around the convergence value.

The NCE is depicted in Fig. 3(a). The proposed al-
gorithm converges to −20 dB of the NCE almost 10 times
faster than “Reference 1” with fixed step-size and fixed in-
terval. Since the convergence characteristics of the proposed
algorithm is better than “Reference 2,” the averaging is not
required. Comparison of the proposed algorithm with “Ref-
erence 3” and “Reference 4” shows the advantage of the
adaptive step-size. Without the adaptive step-size, the NCE
becomes large even if the averaging is used. Though the
NCE for the proposed method reaches −16 dB within 10000
samples, its convergence to the final value requires very long
time.

(a) NCE

(b) ERLE

Fig. 4 NCE and ERLE for some algorithms witout pre-processing.

The ERLE is compared by 3(b). Higher ERLE is
achieved by the proposed and “Reference 2” algorithms
with the adaptive step-size, compared with those with the
fixed step-size. “Reference 1” with fixed interval converges
slowest.

Figure 4(a) compares the NCE for some adaptation al-
gorithms without pre-processing. The proposed algorithm
achieves −28 dB of the NCE which is almost 10 dB smaller
than the standard SAEC. The XM-NLMS failed to converge
at the optimum value for larger step-size. Though the XM-
NLMS with µ = 0.1 converges, the NCE is almost same as
that for the standard SAEC. The convergence speed of XM-
NLMS with µ = 0.1 is slow because of a small step-size.

Figure 4(b) shows the ERLE for some adaptation algo-
rithms without pre-processing. The proposed algorithm, the
standard SAEC, and the XM-NLMS with µ = 0.5 achieve
almost the same ERLE, almost 60 dB. The ELRE for the
XM-NLMS with µ = 0.1 is slightly larger because of the
smaller step-size.

Figure 5 compares the performance when the correct
echo-path identification condition NW/2 < NA ≤ NB is not
satisfied. NA is selected as 30, which is less than NW/2 = 32.
In this case, neither Q−1

f nor Q−1
b exists. The NCE for the

proposed algorithm is almost same as those for the standard
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(a) NCE

(b) ERLE

Fig. 5 NCE and ERLE when correct identification condition is not satis-
fied.

SAEC and the XM-NLMS. The ERLE for the proposed al-
gorithm is almost same as that for the standard SAEC. The
ELRE for the XM-NLMS is slightly larger because of the
smaller step-size. These results show that the performance
of the proposed algorithm is comparable to those for the
conventional algorithms even when the correct echo-path
identification condition is not satisfied.

Simulations for a longer impulse response case have
also been carried out. NA = 800, NB = NW = 1024 are
used. For the proposed algorithm, K = 2000 is used. The
NCE and the ERLE are shown in Fig. 6. The proposed al-
gorithm improves the NCE, while almost the same ERLE is
achieved.

5. Conclusions

This paper proposes an alternative learning algorithm for a
stereophonic acoustic echo canceller without pre-processing
which can identify the correct echo-paths. Convergence
analysis clarifies the condition for correct echo-path identi-
fication. A convergence detection and an adaptive step-size
based on the modification amount of the filter coefficients
are also introduced. Simulation results show 10 dB smaller

(a) NCE

(b) ERLE

Fig. 6 NCE and ERLE for longer impulse response.

coefficient error than those of the conventional algorithms
without pre-processing. Detailed analyses on the conver-
gence condition, performance evaluation for more noisy
case such as double-talk, and for real speech signals should
be future study.
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