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An Adaptive Penalty-Based Learning Extension for the
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SUMMARY Over the years, many improvements and refinements to
the backpropagation learning algorithm have been reported. In this paper,
a new adaptive penalty-based learning extension for the backpropagation
learning algorithm and its variants is proposed. The new method initially
puts pressure on artificial neural networks in order to get all outputs for
all training patterns into the correct half of the output range, instead of
mainly focusing on minimizing the difference between the target and actual
output values. The upper bound of the penalty values is also controlled.
The technique is easy to implement and computationally inexpensive. In
this study, the new approach is applied to the backpropagation learning
algorithm as well as the RPROP learning algorithm. The superiority of
the new proposed method is demonstrated though many simulations. By
applying the extension, the percentage of successful runs can be greatly
increased and the average number of epochs to convergence can be well
reduced on various problem instances. The behavior of the penalty values
during training is also analyzed and their active role within the learning
process is confirmed.
key words: backpropagation, learning algorithm, convergence, error func-
tion, neural networks, generalization

1. Introduction

Since the introduction of the backpropagation (BP) [1]
learning algorithm, it has proved to be efficient in many
applications. Presently, this gradient descent method has
emerged as one of the most well-known and popular learn-
ing algorithms for artificial neural networks (ANNs). How-
ever, in various cases its convergence speed often tends to
be very slow and it often yields suboptimal solutions.

As a result, much research has been focusing on im-
proving the BP learning algorithm and numerous new algo-
rithms and techniques have been proposed. Many attempts
to speed up training and to reduce convergence to local min-
ima have been made in the context of dynamically adjusting
the learning rate during training, including learning algo-
rithms such as SAB [2] and SuperSAB [3], Quickprop [4],
and RPROP [5], [6].

Other directions that have been studied, include the ap-
plication of alternative cost functions. Squared-error func-
tions have been replaced by possible better cost functions,
such as the cross-entropy measure [7]. Furthermore, error
functions have been extended with extra terms to direct the
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search in the weight space towards specific goals, such as
the addition of noise as in simulated annealing [8], [9] or the
application of penalties as in weight decay [9], [10].

In this paper, a new adaptive penalty-based extension
for various objective functions is proposed. Penalties are
applied in order to put pressure on incorrect binary outputs
to get them initially into the correct half of the output range.
The penalties are dynamically adjusted during training to
reflect the difficulty of this task. Here, the new method is
applied to standard backpropagation as well as to the ef-
fective RPROP learning algorithm. Simulations have been
performed on a number of problem instances and the per-
formance of the extended algorithms is compared to their
original counterparts.

2. New Adaptive Penalty-Based Learning Extension

2.1 Idea behind New Approach

Consider learning of artificial neural networks with binary
target values ±1. Of course, the targets also can be 1 and
0, or values from any other binary defined set. The learn-
ing process can be divided into two phases. In the first
phase, an ANN is trained so as to move all its outputs for
all training patterns to the correct side, that is greater than
or less than a certain threshold, which equals zero in this
case. In the second phase, the ANN is trained so as to move
its outputs located in the correct region towards the actual
targets, that is +1 or −1. Compared to the second phase, it
can be expected that the first phase is relatively complex and
time-consuming, because for each single output this process
easily affects many other outputs. Furthermore, these two
phases are likely to coexist among the different outputs dur-
ing training, meaning that the ith output has already been
located into the correct half of the output range, while the
jth output still resides on the wrong side. Therefore, the
difficulty of learning differs for each output.

We propose an adaptive penalty-based learning exten-
sion. In this method, learning for the outputs located on the
wrong side, will be accelerated by applying penalties. In
order to make this acceleration more effective, the penalties
are increased epoch by epoch, while the outputs reside in
the incorrect half of the output range. Furthermore, in or-
der to make the learning process more stable, penalties are
gradually decreased after the outputs have been moved to
the correct side.

Figures 1 and 2 show two example situations. A cir-
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Fig. 1 Network having all its outputs in the correct half of the output
range.

Fig. 2 Network having an output residing in the incorrect half of the
output range.

cle is a target output and a square is an actual output of an
ANN. The value pi represents the input pattern number. In
Fig. 1, all network outputs are located on the correct side.
On the other hand, in Fig. 2, the output for the input pattern
p4 resides in the incorrect half of the output range. Moving
this output towards the correct, lower side, will be affected
by the outputs for the input patterns p3 and p5, which are
being moved towards +1. Therefore, it can be expected that
it will take a long time to convergence, if ever reached.

In the new proposed method, the correction term for
the output of p4 is amplified by applying an adaptive penalty.
The amplification, that is the penalty, is adaptive in the sense
that it is being increased every epoch, while the output re-
sides on the wrong, in this case upper, side. As a result, more
and more pressure is being put on the ANN in order to move
the incorrect output to the right side. After the output enters
into the correct lower half of the output range, the penalty
is decreased. However, in order to avoid the danger that the
output ‘makes a big jump back’ to the incorrect side, the
penalty is gradually decreased epoch by epoch. This way
of controlling the penalties can make the learning process
more stable.

2.2 Formal Description

In the backpropagation learning algorithm, the errors of out-
put neurons are backpropagated through the network during
training. The error signal ei,p(n) of an output neuron i at
an epoch n for a training pattern p, can be defined by taking
the difference between the target output ti,p(n) and the actual
output oi,p(n):

ei,p(n) = ti,p(n) − oi,p(n) (1)

In the new proposed method, for every output neuron i
and every training pattern p, a penalty zi,p(n) is created. The

error backpropagated in the new algorithm is given by the
following equation:

enew
i,p (n) = zi,p(n)ei,p(n) (2)

whereby the penalties are being updated after each epoch as
defined below:

zi,p(n + 1)

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(zi,p(n)z−, 1) if oi,p(n) is at
the same side
as ti,p(n)

min(zi,p(n)z+, zmax) otherwise

(3)

and z− < 1, z+ > 1 and zmax � 1. The initial penalties zi,p(0)
are set to one.

The application of the new proposed method results in
the addition of penalties to the backpropagated error signal.
The task of these penalties is to put pressure on the network
to get all the outputs initially into the correct half of the out-
put range.

The penalties are dynamically adjusted as shown in
Eq. (3) in order to reflect the hardness of this task, by as-
suming that the more difficult it is to move a certain output
for a certain pattern to the right side, the more often it re-
sides in the incorrect half of the output range. Every epoch
an output for a certain pattern resides in the incorrect half,
its corresponding penalty is increased in order to put more
pressure on the network to move the output to the right side.
Once an output reaches its correct half of the output range,
its corresponding penalty is gradually decreased and the fo-
cus of the network on moving the output to the right side
shifts away to outputs for which the corresponding penalties
are increasing.

Figure 3 shows a representative curve of a change of
a single penalty during training. A penalty is being raised
while its corresponding output resides at the wrong side.
The change occurs exponentially, because the penalty is
multiplied by z+ every epoch the output resides in the in-
correct half. Once an output reaches the correct side, the
penalty is gradually decreased by multiplying it with z−. Fi-
nally, it can reach to a minimum of one. The steepness of
the upward and the downward curve is controlled by the pa-
rameters z+ and z−, respectively. Once an output enters its
correct half of the output range, it is not guaranteed that the
output stays there. Therefore, multiple successive phases of
increasing and decreasing a penalty can be expected during
training.

From a different point of view, the error surface can be
considered dynamic. The true error surface is given by us-
ing zi,p(n) = 1. In a learning process, the error surface is
modified by changing the penalties zi,p(n) so that the neu-
ral network, that is its connection weights escape from tem-
poral local minima and move towards the global minimum.
As the connection weights approach to the global minimum,
the penalties also approach to unity. As a result, the error
surface approaches the true one, and then finally the global
minimum becomes the true one.
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Fig. 3 Representative curve of a change of a single penalty during
training.

Dynamic penalties are preferred over static penalties
for two reasons. Different states of a neural network re-
quire different penalty values. Dynamic penalties are able
to adjust to the shape of the error surface during learning,
opposite to static penalties which lack this ability. Further-
more, static penalties still have the risk that a neural network
moves towards a local minimum, as a result of penalty val-
ues not large enough to move away from the local minimum.

Finally, it should be noted that it is not guaranteed that
the proposed method will converge to the global minimum.
However, from the ability of the penalties to adjust to the
error surface and to push networks out of local minima, it
can be expected that the rate of convergence to the global
minimum is increased.

3. Control of Upper Bound

In the previous section, the upper bound for the penalties is
simply defined as zmax � 1. However, it is highly dependent
on the distribution of the training data. Pattern classification
problems can be categorized into two cases. In one case, the
probability density function (pdf) of the training data for all
groups are non-overlapping. They are clearly separated. An
example is shown in Fig. 4. For instance, the parity check
problem, the encoder problem and so on belong to this cate-
gory. In the other case, the pdf of the training data for several
groups are overlapping each other. In this case, perfect clas-
sification is impossible. Some data locate in the other group
region, and are incorrectly classified. An example is shown
in Fig. 5. Many real world problems belong to this case.

In the first case, the proposed penalties are not am-
plified to very large values. Because, as the learning pro-
cess makes progress, the boundaries of the neural network
can move between the pdf of the training data sets, which
are clearly separated. After all training data locate in their
own regions, the penalties are decreased following Eq. (3).
Therefore, as the learning process converges, the penalties
are also decreased. In this case, the static condition for zmax

given by Eq. (3) is sufficient.

Fig. 4 Two non-overlapping distributions.

Fig. 5 Two overlapping distributions.

On the other hand, in the second case, some training
data cannot locate in the correct region, even though the
learning process converges. In this case, the penalties for
these training data are always amplified and amplified. As
a result, the penalties become very large numbers, which
causes unstable behavior.

In order to avoid this problem, an annealing method is
proposed for the upper bound zmax, which is controlled so
as to be gradually decreased, and approach to unity after a
specified number of epochs. Defining this number be the
maximum number of epochs nmax, zmax is controlled by:

zmax(n) = zmax2−Tn (4)

T =
log2(zmax)

nmax
(5)

T is a temperature, controlling the speed of lowering the
upper bound. After nmax epochs, the upper bound becomes
zmax(nmax) = 1. The parameter nmax is also problem de-
pendent. This is true for other annealing methods as well,
such as the Boltzmann machine [11]. However, the pro-
posed method is not a statistical method, and can provide
fast convergence.

The proposed annealing method can also be applied
to the first case, in which the penalties are gradually de-
creased by the extension itself as the learning process makes
progress.

Furthermore, when the number of the hidden units is
not enough, it is inevitable that some training data still re-
main on the wrong side after learning has converged. The
penalties for these training data are continuously amplified,
and become very large numbers. The proposed annealing
upper bound is also effective to overcome this kind of prob-
lem.

4. Generalization Performance

In pattern classification by neural networks, an important
point is generalization. The aim of the proposed adaptive
penalty-based method is to increase the rate of successful
convergences and to accelerate the learning process itself.
In this section, the generalization performance is addressed.

As described in Sect. 2.1, the learning process can be
divided into two phases. Also described in Sect. 2.2, the
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Fig. 6 Boundary has a degree of freedom.

Fig. 7 Boundary is optimized w.r.t. generalization.

proposed method mainly works during the first phase. Fur-
thermore, the proposed method is not a stand-alone learn-
ing algorithm, but is rather combined with other stand-alone
learning algorithms. This is why it is called an extension.
In the second phase, since the penalties are gradually de-
creased until unity, it is mainly the underlying learning al-
gorithm which is active. Therefore, generalization is also
dependent on the underlying learning algorithm.

Figure 6 shows an example, where the pdf of the train-
ing data sets are completely separated. As shown in this
figure, there are many solutions which can provide a well
reduced output error. However, in this situation, the pro-
posed penalties are gradually decreased, and do not affect
the optimization of the boundary for generalization. In the
case of overlapping training data sets, the penalties are also
controlled to be gradually decreased until unity by using the
annealing upper bound proposed in Sect. 3. Therefore, gen-
eralization is also mainly dependent on the underlying learn-
ing algorithm.

If we employ the weight decay learning algorithm [10],
it is expected that the boundary locates in the center as
shown in Fig. 7, where there is no degree of freedom, be-
ing optimized w.r.t. generalization. The proposed method
also can cooperate with this algorithm.

5. Comparative Study

In order to give an indication of the performance of the
new proposed method in terms of convergence speed and
success rate, comparisons have been performed between
the standard backpropagation [1],[11] and RPROP learning
algorithms extended with the new adaptive penalty-based
method on one side and their original counterparts on the
other side on various problem instances. The RPROP learn-
ing algorithm is an improvement of the backpropagation
learning algorithm and it has proven its superiority in many
cases [5], [6].

5.1 Test Problems

5.1.1 N-Bit Parity Problem

The N-bit parity problem is a generalization of the
‘exclusive-or’ (XOR) problem. The task is concerned with
detecting whether the number of activated input bits is even
or odd. In this study, N-bit input strings composed of
{−1,+1} are considered and the corresponding target output
values are defined as −1 and +1 for input data consisting
of an even, respectively odd number of activated bits. The
number of training patterns is equal to 2N .

The N-bit parity problem is considered as a very hard
problem to be solved by neural networks, because a single
‘flip’ of a bit in the input string requires a complementary
classification.

5.1.2 M-N-M Encoder Problem

The task of the M-N-M encoder problem is to learn an auto-
association between M different input/output patterns. Each
training pattern has one bit turned on, i.e. set to one, while
the remaining bits are set to zero. Therefore, the number of
training patterns equals M.

The network applied to learn this auto-association is
a two-layered M-N-M feed-forward neural network. The
complexity of this task resides in the fact that the number
of hidden neurons is less than the number of input and out-
put neurons, i.e. N < M. Consequently, the hidden neu-
rons perform compression or encoding, while the output
neurons perform decompression or decoding. Whenever
N ≤ log2 M, the network is being referred to as a ‘tight’
encoder.

5.1.3 Two Spirals Problem

The task of the two spirals problem is to learn to discrim-
inate between two sets of training points which lie on two
distinct spirals in the x-y plane. These spirals coil three
times around the origin and around one another. The train-
ing data consists of 194 patterns and here, the target values
describing the two classes for the two different spirals are
within the set {−1, 1}.

The difficulty of the two spirals problem has been
demonstrated in many attempts to solve this problem by ap-
plying backpropagation and many of its variants over the
years. One modification to the adapted neural networks that
has often been applied is the usage of shortcut connections
[12]. By using shortcut connections, every neuron is not
only connected to all neurons in the last previous layer as
is in standard feed-forward neural networks, but a neuron is
connected to all neurons in all previous layers. Shortcut con-
nections may ease the training process, because information
learned by neurons is directly inserted in all its following
neurons.
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5.1.4 Thyroid Function Diagnosis

This problem is concerned with diagnosing thyroid diseases.
Based on a patient’s query and examination data, the func-
tioning of the patient’s thyroid has to be classified into one
of the following three classes; under function, normal func-
tion or over function.

The problem is obtained from the Proben1 [13]
database. The data set consists of 3600 training patterns and
1800 test patterns. The target output is encoded in a 3-bit
binary string, where only a single bit is active representing
the class of the input pattern and the other two bits equal
zero. The difficulty of this task lies in the fact that the data
set is formed by three highly unbalanced groups, i.e. 2.3%,
92.5% and 5.1%, respectively.

5.2 Simulation Setup

The neural networks used in our simulations have been
developed using the Java Object-Oriented Neural Engine
(Joone) [14], an open source neural net framework imple-
mented in the Java programming language.

All the adapted neural networks used in our experi-
ments are multilayer feed-forward neural networks. Here,
the backpropagation learning algorithm operates in online
training mode, i.e. weights are updated on a pattern-by-
pattern basis. The connection weights and biases for all net-
works were randomly initialized within the interval [−1, 1].
In the simulations applying the proposed method to the thy-
roid problem, a dynamic upper bound for the penalties fol-
lowing Eqs. (4) and (5) was used, setting the initial upper
bound zmax(0) to 10000 and 10 for the backpropagation
learning algorithm and the RPROP learning algorithm, re-
spectively. In all other simulations featuring the new pro-
posed method, a constant value of 10000 was used for the
maximum penalty zmax. Varying parts of the applied net-
work configurations are summarized for each experiment in-
dividually together with the simulation results in the tables
below. RPROP’s parameters set to their default, previously
proposed values [5] are omitted from this network configu-
ration summary.

In addition, a constant value of 0.1 was added to the
derivative of the logistic and the hyperbolic tangent activa-
tion function for all algorithms, to overcome the ‘flat spot’
problem [4], i.e. the problem where training progresses very
slowly, because the derivative of the activation function ap-
proaches zero, caused by the fact that the output of a neuron
is close to one of its asymptotic output values.

For the parity, encoder and two spirals problem, learn-
ing of the binary task was considered complete, if the ‘40-
20-40’ criterion, described by Fahlman [4], was fulfilled,
i.e. all outputs of output neurons for all training patterns are
within the correct upper or lower 40% of its output range.
The maximum training time nmax for these experiments was
set to 20000 epochs.

In simulations involving the thyroid problem, the max-

Table 1 Simulation results for 6-bit parity problem.

6-Bit Parity
Algorithm Epochs SR Settings

BP
9879 2/25 η : 0.0005
7916 2/25 η : 0.001

RPROP 7492 4/25 ∆max : 0.001

5953 25/25
η : 0.0005
z− : 0.9
z+ : 1.05

5522 24/25
η : 0.001
z− : 0.8
z+ : 1.05

6270 21/25
η : 0.001
z− : 0.9

BP + z+ : 1.01
Extension

3436 25/25
η : 0.001
z− : 0.9
z+ : 1.05

6567 22/25
η : 0.001
z− : 0.9
z+ : 1.1

4695 25/25
η : 0.001
z− : 0.95
z+ : 1.05

7792 7/25
∆max : 0.001
z− : 0.9

RPROP + z+ : 1.05
Extension

7516 19/25
∆max : 0.001
z− : 0.99
z+ : 1.05

Network structure : 6-6-1
Activation function : hyperbolic tangent

imum number of epochs nmax was set to 2000. Learning was
considered complete once an RMSE of 0.125 and 0.10 was
reached for backpropagation and RPROP, respectively

For each problem instance and network configuration,
25 independent runs have been performed. The number of
successful runs and the average number of epochs to con-
vergence, neglecting unsuccessful runs, are reported.

5.3 Simulation Results

Tables 1 and 2 show the simulation results for the 6-bit and
8-bit parity problem, respectively. SR stands for success
rate, η is the learning rate used in the backpropagation learn-
ing algorithm and ∆max is the maximum update-value used
in the RPROP learning algorithm.

The low number of success rates for the backpropaga-
tion and RPROP learning algorithm indicate the difficulty
of this problem. The networks get easily trapped in local
minima. However, applying the new proposed method re-
sulted in an increase of the number of successful runs by a
magnitude. The new method provides a way to escape from
local minima. Moreover, in general the average number of
epochs to convergence was also greatly reduced by the new
method.

Observing the results in greater detail, we see that the
parameter values z− and z+ of the new method rather have
some influence on the performance. Tuning the parameters
carefully can result in a very good performance, but search-
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Table 2 Simulation results for 8-bit parity problem.

8-Bit Parity
Algorithm Epochs SR Settings

BP
7663 2/25 η : 0.0005
5961 3/25 η : 0.001

RPROP - 0/25 ∆max : 0.001

4931 23/25
η : 0.0005,
z− : 0.9

BP + z+ : 1.05
Extension

2807 20/25
η : 0.001,
z− : 0.9
z+ : 1.05

RPROP +
10444 14/25

∆max : 0.001

Extension
z− : 0.99
z+ : 1.05

Network structure : 8-8-1
Activation function : hyperbolic tangent

Table 3 Simulation results for 8-2-8 encoder problem.

8-2-8 Encoder
Algorithm Epochs SR Settings

BP - 0/25 η : 0.005
RPROP 99 25/25

BP +
4883 22/25

η : 0.005

Extension
z− :0.9999
z+ :1.01

RPROP +
94 25/25

z− : 0.9999
Extension z+ : 1.01

Network structure : 8-2-8
Activation function : logistic

Table 4 Simulation results for 32-2-32 encoder problem.

32-2-32 Encoder
Algorithm Epochs SR Settings

RPROP 3727 25/25
RPROP +

2985 25/25
z− : 0.9999

Extension z+ : 1.01

Network structure : 32-2-32
Activation function : logistic

Table 5 Simulation results for 48-2-48 encoder problem.

48-2-48 Encoder
Algorithm Epochs SR Settings

RPROP 13914 14/25
RPROP +

12170 25/25
z− : 0.9999

Extension z+ : 1.01

Network structure : 48-2-48
Activation function : logistic

ing for an optimal parameter set is usually considered a very
time-consuming task. However, less well tuned parameters
still result in a performance much better than the learning
algorithms without the proposed extension.

Tables 3, 4 and 5 show the results for the 8-2-8, 32-2-32
and 48-2-48 encoder problem, respectively.

It can be easily noticed that the learning algorithms
extended with the new approach outperform their original
counterparts also for the encoder problem. For a large range
of different learning rates η, standard backpropagation was

Table 6 Simulation results for two spirals problem.

Two Spirals
Algorithm Epochs SR Settings

BP
14141 7/25 η : 0.0005
9838 9/25 η : 0.001

RPROP 8964 16/25 ∆max : 0.001

11650 18/25
η : 0.0005
z− : 0.99

BP + z+ : 1.001
Extension

9005 19/25
η : 0.001
z− : 0.99
z+ : 1.001

7179 23/25
∆max : 0.001
z− : 0.9999

RPROP + z+ : 1.001
Extension

9259 25/25
∆max : 0.001
z− : 0.99999
z+ : 1.001

Network structure : 2-5-5-5-1 +
shortcut connections

Activation function : hyperbolic tangent

unable to find a solution for the tight encoder problems.
However, backpropagation extended with the new method
was still able to find a solution for the 8-2-8 encoder in 88%.

The RPROP learning algorithm has a much more sat-
isfactory performance, even on complex encoder problems.
RPROP easily finds a solution for the 8-2-8 and 32-2-32 en-
coders, however by applying the new method the average
number of epochs to convergence was reduced. For the 48-
2-48 encoder problem, RPROP also experienced difficulties
and was unable to find a solution in all runs, while by ap-
plying the new proposed method in combination with the
RPROP learning algorithm, the networks converged to a so-
lution in all runs.

Table 6 shows the simulation results of the two spirals
problem. All applied ANNs used shortcut connections.

Again, the learning algorithms extended with the new
proposed method are superior to their original counterparts.
Although backpropagation as well as the RPROP learning
algorithm are able to find solutions, the number of success-
ful runs is greatly increased by applying the new method and
in general the average number of epochs to convergence is
decreased.

Table 7 shows the simulation results of the thyroid
problem. Networks being trained by the backpropagation
learning algorithm were halted at an RMSE of 0.125 and
networks being trained by the RPROP learning algorithm
were halted at an RMSE of 0.10 at which point the test set
was applied. The average of the correctly classified percent-
age of training and test pattens for these converged networks
are given by TrnC and TstC, respectively. Tr nA and TstA
give the average percentages of correctly classified training
and test patterns for all 25 neural networks, that is, the con-
verged networks and the networks that were halted after the
maximum number of epochs.

For a large range of different learning rates η, the stan-
dard backpropagation learning algorithm was unable to train
the neural networks in such a way that the networks were
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Table 7 Simulation results for thyroid problem.

Thyroid
Algorithm Epochs SR Results Settings

BP - 0/25

TrnC : -

η : 0.0005
TstC : -
Tr nA : 92.4%
TstA : 92.7%

RPROP 754 10/25

TrnC : 98.9%
TstC : 97.9%
Tr nA : 97.9%
TstA : 97.0%

1045 12/25

TrnC : 98.0%
η : 0.0005

BP + TstC : 97.0%
z− : 0.9999

Extension Tr nA : 97.8%
z+ : 1.05

TstA : 96.9%

696 13/25

TrnC : 98.9%
z− : 0.99999

RPROP + TstC : 98.0%
z+ : 1.005

Extension Tr nA : 98.7%
zmax : 10

TstA : 97.8%

Network structure : 21-4-3
Activation function : logistic

able to make any distinction between patterns from different
classes. It classified all patterns as the major class, i.e. nor-
mal function.

By applying the extension to the backpropagation
learning algorithm, the performance is greatly improved.
The neural networks were able to classify also a large part
of the two minor groups correctly.

The RPROP learning algorithm itself is able to obtain
very good results. Still, by applying the proposed method,
the number of networks converged to an RMSE below 0.10
was increased, the average number of epochs to convergence
was reduced and also the quality of the solutions itself re-
garding generalization was improved. However, in order to
obtain these results, the initial maximum penalty zmax(0) had
to be reduced to 10.

Finally, we have confirmed that the proposed method
can be successfully applied in combination with the weight
decay method [10]. Regarding the thyroid problem, there
isn’t much space left for optimization. However, simula-
tions applying the RPROP learning algorithm extended with
the proposed method in combination with the weight decay
method resulted in a slightly higher success rate and still
outperformed the RPROP learning algorithm without the ex-
tension in combination with the weight decay method.

6. Observation of Penalties

In order to learn more about the effects and behavior of the
applied penalties, the penalty values during training have
been studied. The lower the values of the penalties are dur-
ing the learning process, the less pressure the learning al-
gorithm puts on the network, and the more the extended
learning algorithm resembles its original counterpart. On
the other side, the higher the penalty values are, the more
pressure the learning algorithm puts on the network to get
the outputs into the correct half of the output range, and the
more it operates differently from the original learning algo-

Fig. 8 Representative graph of the change of the values of a penalty from
the first group.

Fig. 9 Representative graph of the change of the values of a penalty from
the second group.

rithms.
Here, a single representative simulation run of a neural

network, implementing the backpropagation learning algo-
rithm extended with the new proposed method and having
its parameter values η, z− and z+ set to 0.001, 0.9 and 1.05
respectively, applied to the 6-bit parity problem, has been
further investigated. For this single run, the ‘40-20-40’ cri-
terion was fulfilled at the 3503rd epoch.

By observing the change of the penalty values that
takes place during training, two main groups of penalties can
be characterized. Most penalties belong to the first group,
where the penalties undergo a change only in the beginning
of the learning process and their values vary somewhere be-
tween 1 and 20. Of course, this range is highly dependent on
the parameter values z− and z+. An example of a change of
a single penalty, representative for the penalties of the first
group, is shown in Fig. 8. The second group contains penal-
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ties, which values are raised to larger values, somewhere in
the range of 1 to 100. Furthermore, these penalties often
seem to undergo a change longer than the penalties from the
first group. A representative for the penalties of the second
group is shown in Fig. 9.

Not only from the results of the performed simulations,
also from the observation of the change of penalty values
during training, it can be concluded that the penalties in the
new proposed method do play an active role in the learn-
ing process. Especially, the penalties from the second group
heavily pressure the neural network in order to get the out-
puts in the correct half of the output range.

7. Tuning Extension Parameters

In the new proposed method two important parameter val-
ues, namely z− and z+, need to be determined. The two pa-
rameters have a great influence on the performance of the
new method and are problem dependent. How to determine
the decremental and incremental penalty values efficiently
remains an open problem.

However, from our experience the following remarks
can be made. By initializing z+ with values too close to
one, penalties can’t be raised to large enough values to be-
come effective resulting in a performance similar to under-
lying learning algorithm without the extension. On the other
side, initializing z+ with values too large, the danger exists
that too much pressure is being put on the network driving
its weights into saturation. Furthermore, a larger z+ seems
to require a smaller z− in order to keep the learning process
stable.

The RPROP learning algorithm seems more respon-
sive to the penalties than the backpropagation learning al-
gorithm. As a result, the RPROP algorithm requires values
closer to one for z− and z+, in comparison to backpropaga-
tion. The two main differences between the backpropaga-
tion learning algorithm and the RPROP learning algorithm
are a static learning rate versus a dynamic learning rate and
online training mode versus batch mode. The reason behind
these sensitive extension parameters in combination with the
RPROP learning algorithm can be analyzed as follows: In
the RPROP learning algorithm, the learning rate is adjusted
during training. For instance, if the derivative of the back-
propagated error doesn’t change in direction in successive
epochs, the learning rate is increased [5], [6]. Thus, it has
similar effect as the proposed method. Therefore, z− and z+

cannot be set far from unity. Otherwise, the pressure might
become too large, resulting in an unstable learning process.

In case of the parity, encoder and two spirals problem,
the penalty upper bound zmax has a rather small influence
on the performance of the learning algorithm, at least if it is
set to a large enough value. However, the RPROP learning
algorithm extended with the new method applied to the thy-
roid problem seems to benefit from a small initial maximum
penalty. The reason is the same as analyzed above.

8. Concluding Remarks

A new adaptive penalty-based approach applicable as an ex-
tension for squared-error functions in backpropagation and
its variants is proposed. The new method initially puts pres-
sure on artificial neural network in an attempt to get all the
outputs for all training patterns into the correct half of the
output range, instead of mainly focusing on minimizing the
difference between the target and actual outputs.

Simulations have been performed and the results have
demonstrated the usefulness of the proposed approach. By
applying the new algorithm, the rate of successful runs can
be greatly increased and the average number of epochs to
convergence can be well reduced on various problem in-
stances. The new method is easy to implement and com-
putationally inexpensive.

Furthermore, the observation of the change of the
penalty values during training has demonstrated the active
role the penalties play within the learning process.

Future research will be directed towards learning tasks
consisting of patterns having continuous target output val-
ues. We intent to investigate on how to decide appropriate
thresholds defining the output halves for real-values output
patterns. Furthermore, how to decide appropriate decremen-
tal and incremental penalty values, i.e. values for z− and z+

will also be a future research project.
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