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PAPER

A Distortion-Free Learning Algorithm for Feedforward

Multi-Channel Blind Source Separation

Akihide HORITA†a), Student Member, Kenji NAKAYAMA†b),
and Akihiro HIRANO†c), Members

SUMMARY FeedForward (FF-) Blind Source Separation
(BSS) systems have some degree of freedom in the solution space.
Therefore, signal distortion is likely to occur. First, a criterion
for the signal distortion is discussed. Properties of conventional
methods proposed to suppress the signal distortion are analyzed.
Next, a general condition for complete separation and distortion-
free is derived for multi-channel FF-BSS systems. This condi-
tion is incorporated in learning algorithms as a distortion-free
constraint. Computer simulations using speech signals and sta-
tionary colored signals are performed for the conventional meth-
ods and for the new learning algorithms employing the proposed
distortion-free constraint. The proposed method can well sup-
press signal distortion, while maintaining a high source separa-
tion performance.
key words: blind source separation, signal distortion, conver-
gence, learning algorithm, convolutive mixture

1. Introduction

Signal processing, including noise cancellation, echo
cancellation, equalization of transmission lines, estima-
tion and restoration of signals has become a very impor-
tant research area. These techniques require separation
between desired signals and interference. However, in-
formation regarding the signals and their interference
is insufficient in many cases. Furthermore, their mix-
ing and transmission processes are not well known in
advance. In these kinds of situations, blind source sep-
aration (BSS) technologies using statistical properties
of signal sources have become very important [1]-[5].

In many applications, the mixing processes are
convolutive mixtures. Therefore, separation processes
require convolutive models. Various methods have been
proposed for separating sources in the time domain and
the frequency domain. Their separation performance is
highly dependent on the signal sources and the transfer
functions of the mixture [7]-[10],[14],[15],[17],[18].

BSS learning algorithms make the output signals
to be statistically independent. However, these ap-
proaches do not always guarantee distortion-free sep-
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aration. In order to suppress signal distortion, the
following methods have been proposed. One of them
reduces the distance between the separation block out-
puts and observations [11]. However, since the obser-
vations include several signal sources, the interference
components in the outputs are not well reduced. The
other method modifies the separation block outputs by
multiplying the inverse of the separation block matrix
[13]. However, it is somewhat difficult to achieve high
performances in both source separation and signal dis-
tortion.

In this paper, first, evaluation measures for signal
distortion are discussed. Secondly, conditions for source
separation and distortion-free are derived. Based on
these conditions, a new learning algorithm with a
distortion-free constraint is proposed. Performances of
a new learning algorithm in comparison with conven-
tional methods are analyzed through computer simula-
tions.

2. BSS Systems for Convolutive Mixture

2.1 Network Structure and Equations

A block diagram of a feedforward (FF-) BSS system
with 2 signal sources and 2 sensors is shown in Fig.1.
The mixing stage has a convolutive structure. In the
separation block, Wkj(z) are realized by using FIR fil-
ters.
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Fig. 1 BSS system with 2 signal sources and 2 sensors.

Let si(n), xj(n) and yk(n) be the inverse z-
transform of Si(z), Xj(z) and Yk(z), respectively. Fur-
thermore, hji(l) and wkj(n, l) are the coefficients of
Hji(z) and Wkj(z), respectively, when they are realized
by using FIR filters. We define the following vectors
and matrices,
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s(n) = [s1(n), · · · , sN(n)]T (1)
x(n) = [x1(n), · · · , xN (n)]T (2)
y(n) = [y1(n), · · · , yN (n)]T (3)

h(l) =

⎡
⎢⎣

h11(l) · · · h1N (l)
...

. . .
...

hN1(l) · · · hNN (l)

⎤
⎥⎦ (4)

w(n, l) =

⎡
⎢⎣

w11(n, l) · · · w1N (n, l)
...

. . .
...

wN1(n, l) · · · wNN (n, l)

⎤
⎥⎦ . (5)

T is the transpose operation of vectors and matrices. l
expresses the sample number of the impulse responses
in the mixing block and the filter coefficients in the
separation block. n indicates the iteration number for
updating the separation block Wkj(z). Update will be
carried out sample by sample. N is the number of chan-
nels. In Fig.1, N = 2.

By using these definitions and expressions, the ob-
servations x(n) and the output signals y(n) are given
by

x(n) =
Kh−1∑
l=0

h(l)s(n − l) (6)

y(n) =
Kw−1∑

l=0

w(n, l)x(n − l) (7)

where Kh is a length of the impulse responses in the
mixing block. Kw is the number of the taps in the FIR
filters used in the separation block.

In the z-domain, the above equations can be ex-
pressed by

X(z) = H(z)S(z) (8)
Y (z) = W (z)X(z) (9)
S(z) = [S1(z), · · · , SN (z)]T (10)
X(z) = [X1(z), · · · , XN(z)]T (11)
Y (z) = [Y1(z), · · · , YN (z)]T (12)

H(z) =

⎡
⎢⎣

H11(z) · · · H1N (z)
...

. . .
...

HN1(z) · · · HNN (z)

⎤
⎥⎦ (13)

W (z) =

⎡
⎢⎣

W11(z) · · · W1N (z)
...

. . .
...

WN1(z) · · · WNN (z)

⎤
⎥⎦ . (14)

The relation between the signal sources and the outputs
is further expressed by

Y (z) = W (z)H(z)S(z) = A(z)S(z) (15)

A(z) =

⎡
⎢⎣

A11(z) · · · A1N (z)
...

. . .
...

AN1(z) · · · ANN (z)

⎤
⎥⎦ . (16)

2.2 Learning Algorithm in Time Domain

A learning algorithm for separating sources based on a
natural gradient method using mutual information as
a cost function has been proposed [6]. This learning
algorithm in the time domain is expressed by

w(n + 1, l) = w(n, l) + η

Kw−1∑
q=0

[Iδ(l − q)

−〈Φ(y(n))yT (n − l + q)〉]w(n, q) (17)
Φ(y(n)) = [Φ(y1(n)), · · · , Φ(yN (n))]T (18)

Φ(yk(n)) =
1 − e−yk(n)

1 + e−yk(n)
. (19)

η is a learning rate, I is the identity matrix, <> is an
averaging operation and δ(n) is Dirac’s delta function,
where δ(0) = 1 and δ(n) = 0, n �= 0.

2.3 Learning Algorithm in Frequency Domain

Based on the same idea, a learning algorithm in the
frequency domain has been proposed in [6],[12],[16].

W (r + 1, m) = W (r,m)
+η[I − 〈Φ(Y (r,m))Y H(r,m)〉]W (r,m) (20)

Φ(Y (r,m)) = [Φ(Y1(r,m)), · · · , Φ(YN (r,m))]T (21)

Φ(Yk(r,m)) =
1

1 + e−Y R
k

(r,m)
+

j

1 + e−Y I
k

(r,m)
. (22)

Y H(r,m) means the Hermitian matrix of Y (r,m). The
parameter r is the frame number used in the FFT, and
m indicates the frequency point in each frame. W (r,m)
is the weight matrix of the r-th FFT frame and the m-
th frequency point. Y (r,m) is the output of the r-th
FFT frame and the m-th frequency point. Y R

k (r,m)
and Y I

k (r,m) represent the real part and the imaginary
part of Yk(r,m), respectively.

It has been reported that the learning algorithm
given in Eq.(20) transforms the outputs into the
white signals due to the identity matrix I. In or-
der to avoid this problem, I in Eq.(20) is replaced by
diag(〈Φ(Y (r,m))Y H(r,m)〉) [16] as follows:

� (r + 1, m) = � (r, m) + η[diag(〈Φ(� (r, m))� H(r, m)〉)
−〈Φ(� (r,m))� H(r,m)〉]� (r, m) (23)

where, diag(×) is the diagonal matrix of ×. In this
paper, the learning algorithms using Eqs.(20) and (23)
will be referred to as FREQ(1) and FREQ(2), respec-
tively.

3. Evaluation of Signal Distortion

3.1 Criterion for Signal Distortion

One candidate of the criteria for signal distortion may
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be the signal sources. However, in the learning algo-
rithms of the BSS systems, where the signal sources
are assumed to be statistically independent, the sepa-
ration block is trained so that its outputs become sta-
tistically independent. The transfer functions in the
mixing block are not estimated. Therefore, it is difficult
to measure signal distortion as the difference between
the separation block outputs and the signal sources.

In the conventional methods, the signal sources in-
cluded in the observations are used as the criteria. This
means that changes of the frequency responses, caused
in the separation block, are treated as the signal distor-
tion [4],[11],[13],[19]-[21]. This paper also follows this
criterion. As a result, Hii(z)Si(z) or Hji(z)Si(z), j �= i
are taken into account as a criterion for the signal dis-
tortion.

3.2 Conditions for Source Separation and Distortion-
Free

For simplicity, the BSS system with two sources and
two sensors, as shown in Fig.1, is used. Furthermore,
the sources Si(z) are assumed to be separated at the
outputs Yi(z). This does not lose generality. Con-
sidering the criterion of signal distortion as defined in
Sec.3.1, the condition for distortion-free source separa-
tion can be expressed as follows:
Source separation : Non diagonal elements of �(z) are zero.

A12(z) = W11(z)H12(z) + W12(z)H22(z) = 0 (24)
A21(z) = W21(z)H11(z) + W22(z)H21(z) = 0 (25)

Distortion free : Diagonal elements of �(z) are Hii(z).

A11(z) = W11(z)H11(z) + W12(z)H21(z) = H11(z)(26)
A22(z) = W21(z)H12(z) + W22(z)H22(z) = H22(z)(27)

The conventional learning algorithm given by
Eqs.(17)-(23) employs only Eqs.(24) and (25) as cost
functions. Equations (26) and (27) are not guaranteed
to be satisfied.

The number of the equations for source separation,
that is no interference, is two. The number of vari-
ables, that is Wkj(z), is four. Therefore, the solutions
for Wkj(z) are not unique. There exist some degrees of
freedom in Wkj(z). Since different speech signals are
not statistically independent exactly, the output sig-
nals expressed by Aii(z)Si(z) may be changed so as to
be statistically independent to each other by adjusting
Wkj(z), which satisfy the conditions Eqs.(24) and (25).
Thus, the output signals can deviate from the observed
signal sources Hii(z)Si(z), resulting in the signal dis-
tortion.

Therefore, by applying Eqs.(17) through (23), it
is very likely that signal distortion will occur. This
analysis is valid for BSS systems trained in both the
time and the frequency domains.

The scaling problem is well known in the BSS.

Scaling of the BSS outputs cannot be controlled by
the learning algorithms. The separation block is ad-
justed so that the outputs become statistical indepen-
dent to each other. There still remains a degree of
freedom for scaling by constants. Especially, in the
frequency domain BSSs, scaling for different frequency
points may be different. This causes distortion in the
frequency response, that is ’signal distortion’. Thus,
in the frequency domain BSSs, ’signal distortion’ and
’scaling problem’ can be regarded as the same problem.
The conventional learning algorithms given by Eqs.(17)
though (23) do not solve the scaling problem.

4. Conventional Methods for Suppressing Sig-
nal Distortion

4.1 Minimal Distortion Principle (MDP)

A learning algorithm for reducing signal distortion has
been proposed [11]. The cost function of the conven-
tional method described in Sec.2.2 has been extended
by including the distance between the observed signals
and the output signals. Therefore, the output signals
are forced to approach to the observed signals.

The update equation for the filter coefficients is
given by

w(n + 1, l) = w(n, l)

+ η

Kw−1∑
q=0

[Iδ(l − q) − 〈Φ(y(n))yT (n − l + q)〉

− μ(y(n) − x(n))yT (n − l + q)]w(n, q). (28)

Convergence property of this method is analyzed
here. If Yi(z) approach to Xi(z), that is Yi(z) = Xi(z),
then,

Yi(z) − Xi(z) = (Aii(z) − Hii(z))Si(z)
+ (Aij(z) − Hij(z))Sj(z) = 0, i �= j(29)

Since, Si(z) and Sj(z) are assumed to be statistically
independent, the above equation is satisfied when

Aii(z) = Hii(z) (30)
Aij(z) = Hij(z). (31)

According to our discussion from Sec.3.2, if Aii(z)
approach to Hii(z), then distortion-free is guaranteed.
Furthermore, in the same section, it was also concluded
that the non-diagonal elements of A(z) should be zero
in order to achieve source separation. However, here
Aij(z) tend to approach to Hij(z). This means the
interference components remain in the outputs, result-
ing in poor source separation. Although weight of the
source separation and the signal distortion can be con-
trolled by using the scaling factor μ, it is difficult to
achieve good performance in both the source separa-
tion and the signal distortion at the same time.
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It should be pointed out that the criterion of the
signal distortion, that we introduced in this paper, is
not the observed signal itself but the signal source in-
cluded in the observed signals. This is a very important
difference between them.

4.2 Signal Distortion Suppression by Using Inverse
Separation Matrix

A method for suppressing signal distortion in the fre-
quency domain BSS has been proposed [13]. After
the source separation, the separation block outputs are
modified by multiplying the inverse of the separation
matrix W (r,m), which is given by Eqs.(20) or (23).
More concretely, the diagonal elements in W−1(r,m)
are used. Thus, the modified output vector is given by

Ŷ (r,m) = diag[W −1(r,m)]Y (r,m). (32)

This approach is called a projection back (PB) method.
In this method, the learning of source separation and
suppressing signal distortion are separated.

5. A New Learning Algorithm with Distortion-
Free Constraint

5.1 Distortion-Free Constraint

In this subsection, a distortion-free constraint is derived
[22]-[25]. The conditions for distortion-free source sep-
aration, which are expressed by Eqs.(24) through (27)
for the 2 channel case, can be arranged in a matrix form
as follows:

W (z)H(z) = Λ(z) (33)
Λ(z) = diag[H(z)]. (34)

Let Γ(z) be a matrix containing the non-diagonal ele-
ments of H(z) as follows:

Γ(z) = H(z) − Λ(z). (35)

Substituting H(z) in Eq.(35) for that in Eq.(33), we
obtain

W (z)(Λ(z) + Γ(z)) = Λ(z). (36)

Solve this equation for Γ(z)

Γ(z) = W−1(z)(I − W (z))Λ(z) (37)
= (W−1(z) − I)Λ(z). (38)

From Eq.(35), it follows

diag[Γ(z)] = diag[(W −1(z) − I)Λ(z)] = 0. (39)

Since Λ(z) is the diagonal matrix, the above equation
can be rewritten as

diag[(W−1(z) − I)] = 0 (40)

This condition holds, when the diagonal elements of

W−1(z) are 1. The inverse matrix is generally ex-
pressed by

W−1(z) =
adj W (z)
detW (z)

(41)

where adj W (z) is the adjugate matrix of W (z). Since,
the diagonal elements of W−1(z) equal 1, then

diag[W−1(z)] =
diag[adj W (z)]

det W (z)
= I. (42)

Letting the j-th diagonal element of adj W (z) be
Ŵjj(z), the avobe equation can be solved for Ŵjj(z)
as follows:

Ŵjj(z)
det W (z)

= 1 (43)

Ŵjj(z) = detW (z) (44)

Ŵjj(z) is also a cofactor of W (z). This equation
expresses both conditions of ’Source Separation’ and
’Distortion-Free’ simultaneously.

5.2 Approximation of Distortion-Free Constraint

Solving Eq.(44) is computationally expensive. There-
fore, we introduce an approximation formula for this
calculation.

Equation (44) can be rewritten as follows:

Wjj(z) = 1 + wT
row,j(z)M−1

jj (z)wcol,j(z)
(j = 1, · · · , N). (45)

The derivation is given in Appendix A. M jj(z) is an
(N − 1)× (N − 1) minor matrix, i.e. removing the j-th
row and j-th column from W (z). The vectors wcol,j(z)
and wrow,j(z) are:

wcol,j(z) = [W1j(z),W2j(z), · · · , WNj(z)]T (46)

wrow,j(z) = [Wj1(z),Wj2(z), · · · , WjN (z)]T (47)

wcol,j(z) and wrow,j(z) do not include Wjj(z). Equa-
tion (45) is not an explicit solution, because Wkk(z) is
included in M−1

jj (z)(j �= k), which is used to calculate
Wjj(z).

In the time domain, wjj(n + 1, l) are calculated as
follows: Since Wjj(z) is realized as an FIR filter, whose
transfer function is a series of z−1, the right hand side
of Eq.(45) is first expanded into a series of z−1. Next,
the corresponding coefficients of both hand sides are
compared, and the coefficients of Wjj(z), which are
wjj(n+1, l), are calculated. However, this series expan-
sion requires a huge number of computations. There-
fore, this process is equivalently carried out in the fre-
quency domain in order to save the computational load.
w(n+1, l), given by Eq.(17), are first transformed into
the frequency domain. Next, Wjj(n + 1, m), which
express samples of Wjj(ejωT ), are obtained by using
Eq.(45). After that, Wjj(n + 1, m) are inversely trans-
formed into wjj(n + 1, l).



HORITA et al.: A DISTORTION-FREE LEARNING ALGORITHM FOR MULTI-CHANNEL BLIND SOURCE SEPARATION
5

5.3 Combination of Learning Algorithm and Con-
straint in Frequency Domain

The condition for source separation and distortion-
free expresses only a relation between Wjj(z) and
Wjk(z), k �= j. The optimal solutions for them can-
not be obtained. Therefore, this condition should be
combined with the learning algorithms for the source
separation given by Eqs.(20) or (23). The basic idea be-
hind the proposed method is as follows : First, Wjj(z)
and Wjk(z) are updated following the original learn-
ing algorithm for source separation. Next, Wjj(z) are
modified following the condition given by Eq.(45).

The proposed learning algorithm is expressed as

Step 1 : Update Wjj(r,m) and Wjk(r,m) following
Eqs.(20) or (23), resulting in Wjj(r + 1, m) and
Wjk(r + 1, m).

Step 2 : Calculate Wjj(r + 1, m) by Eq.(45). Here,
Wjj(r + 1, m) is changed to W̃jj(r + 1, m) for con-
venience.

W̃jj(r + 1, m) = 1+

�
T
row,j(r + 1, m)�−1

jj (r + 1,m)�col,j(r + 1, m) (48)

Step 3 : Modify Wjj(r + 1, m) following

Wjj(r + 1, m) = (1 − α)Wjj(r + 1, m) + αW̃jj(r + 1, m)

(0 < α ≤ 1). (49)

Wjj(r + 1, m) in the left-hand side is the modified
version, which will be used in the next frame r+1.

In the above procedure, Step 3 is introduced. The
reason can be explained as follows: The constraint is de-
rived based on the source separation and the distortion-
free. However, at the beginning of the learning process,
the sources are not well separated. Therefore, complete
replacement of Wjj(r + 1, m) by using only the con-
straint may cause some unstable behavior. So, in order
to gradually impose the constraint, the parameter α
is introduced in our method. α will be optimized by
experience.

As described in Sec.5.2, Eq.(45) is not an explicit
solution for all Wjj(r + 1, m), j = 1, · · · , N . However,
it can be expected that the update changes of Wkk(z)
are very small, because a small learning rate is usually
applied. Therefore, Eq.(45) can be used to solve Wjj(z)
by treating the Wkk(z) in M−1

jj (z) as constants. Use-
fulness of this approximation will be examined through
simulation.

5.4 Combination of Learning Algorithm and Con-
straint in Time Domain

The distortion-free constraint can also be applied to
BSS systems trained in the time domain.

Step 1 : Update wjj(n, l) and wjk(n, l) following
Eqs.(17) through (19) resulting in wjj(n+1, l) and
wjk(n + 1, l).

Step 2 : wjj(n + 1, l) is calculated by Eq.(45), result-
ing in w̃jj(n + 1, m).

Step 3 : Modify wjj(n, l) following

wjj(n + 1, l) = (1 − α)wjj(n + 1, l) + αw̃jj(n + 1, l)
(0 < α ≤ 1). (50)

wjj(n + 1, l) in the left-hand side is the modified
version, which will be used in the next sample n+1.
How to calculate w̃jj(n + 1, l) is described in the
last paragraph in Sec.5.2.

5.5 Learning Algorithm with Distortion-Free Con-
straint for Two Channels

In case of two cannels, the distortion-free constraint de-
fined in Eq.(44) can be solved explicitly. Equation(44)
is rewritten by

Wjj
2(z) − Wjj(z) − Wjk(z)Wkj(z) = 0 (51)

j = 1, 2, k = 1, 2, j �= k.

This equation is solved for Wjj(z) as follows:

Wjj(z) =
1 ±√1 + 4W12(z)W21(z)

2
, j = 1, 2. (52)

The above equation includes a ± sign. Thus, there
exist two solutions. When the power of Sj(z) is maxi-
mum in Xj(z), Sj(z) are likely to be separated in Yj(z).
When the sensor of Xj(z) locates close to Sj(z), this
assumption is likely to be satisfied. In this case, we can
select the + sign in this equation.

Therefore, in case of two channels, W̃jj(r,m) in
Eq.(49) is expressed as

W̃jj(r + 1,m) =
1 +

√
1 + 4W12(r + 1, m)W21(r + 1, m)

2
(53)

Next, time domain implementation is considered.
Equation (51) is rewritten as follows:

W̃ 2
jj(z) − W̃jj(z) = Wjk(z)Wkj(z) (54)(

Kw−1∑
l=0

w̃jj(n + 1, l)z−l

)2

−
Kw−1∑

l=0

w̃jj(n + 1, l)z−l

=
Kw−1∑
l1=0

Kw−1∑
l2=0

w12(n + 1, l1) w21(n + 1, l2)z−(l1+l2).(55)

By comparing the coefficients of the left-hand side and
the right-hand side of the above equation, w̃jj(n + 1, l)
in Eq.(50) can be obtained as follows:

w̃jj(n + 1, 0) =
1 +
√

1 + 4w12(n + 1, 0)w21(n + 1, 0)

2
(56)
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w̃jj(n + 1, l) =

∑l

l1=0
w12(n + 1, l1)w21(n + 1, l − l1)

2w̃jj(n + 1, 0) − 1

−

∑l−1

l2=1
w̃jj(n + 1, l2)w̃jj(n + 1, l − l2)

2w̃jj(n + 1, 0) − 1
, l > 0. (57)

Equation (57) is successively calculated starting from
l = 1 until l = Kw − 1. The derivation of Eqs.(56) and
(57) is given in Appendix B.

5.6 Comparison between Conventional Methods and
Proposed Method

In the MDP method, the source separation is affected,
since the output signals are controlled to approach to
the observations, even though the signal distortion can
be reduced. In the PB method, first the learning pro-
cess for source separation is carried out. After that,
the signal distortion is suppressed by multiplying the
diagonal elements of the inverse separation matrix.

On the other hand, in the proposed method, the
constraint should be combined with the learning algo-
rithm for the source separation. This is because the
constraint is derived from both conditions of the com-
plete separation and the signal distortion-free. The
learning process is required to make progress taking
both conditions into account simultaneously.

6. Simulations and Discussions

6.1 Learning Methods and Their Abbreviations

In this section, several kinds of learning methods will
be compared. They are summarized in Table 1.

Table 1 Abbreviations of applied learning algorithms.

TIME Eqs.(17)-(19) [6]

TIME (MDP) Eq.(28) [11]

TIME (DF)
Eqs.(17)-(19) with new distortion-free con-
straint Eqs.(45) or (56) and (57)

FREQ(1) Eqs.(20)-(22) [6],[16]

FREQ(1+PB) Eqs.(20)-(22) with Eq.(32) [13]

FREQ(1+DF)
Eqs.(20)-(22) with new distortion-free con-
straint Eqs.(45) or (53)

FREQ(2) Eqs.(21)-(23) [16]

FREQ(2+PB) Eqs.(21)-(23) with Eq.(32) [13]

FREQ(2+DF)
Eqs.(21)-(23) with new distortion-free con-
straint Eqs.(45) or (53)

As described in Sec.3.2, FREQ(1) and FREQ(2)
do not solve the scaling problem, and may cause the
signal distortion.

In the simulation, wjk(n, l) and wjj(n, l) are up-
dated sample by sample. Wjk(r,m) and Wjj(r,m) are
updated frame by frame. Therefore, the average opera-
tion <> in Eqs.(17), (20) and (23) are replaced by the
instantaneous values.

Simulations are performed for 2 channel and 3
channel BSS systems. In the 2 channel BSS, TIME
(DF) uses Eqs.(56) and (57). FREQ (1+DF) and

FREQ (2+DF) use Eq.(53). In any case, the same re-
sults are obtained by using Eq.(45). In the 3 channel
BSS, Eq.(45) is always applied.

6.2 Simulation Setup

A mixture block, simulating actual acoustic spaces by
using 256 tap FIR filters, is applied. Speeches and
stationary colored signals, generated by 2nd-order AR
models, are used as sources. The FFT size is set to
256 points for training in the frequency domain. FIR
filters with 256 taps are used for training in the time
domain. The initial guess for the separation blocks are
Wjj(z) = 1 and Wkj(z) = 0, k �= j. η in the learn-
ing algorithms Eqs.(17), (20), (23) and (28) is set to
1.0 × 10−6 ∼ 7.0 × 10−6. μ in the MDP algorithm
Eq.(28) is 0.1 ∼ 0.2. α in the proposed learning algo-
rithms Eqs.(49) and (50) is optimized by experience,
and is set to be 1 and 3.0 × 10−4 for the frequency do-
main BSS and the time domain BSS, respectively. In
the frequency domain BSS, 0 < α ≤ 1 have been also
tried, as a result, α = 1 can provide the best perfor-
mance. α = 1 means that Step 3 is not used. The
difference between them should be more investigated.

6.3 Evaluation Measures for Source Separation and
Signal Distortion

Source separation is evaluated by the following two
signal-to-interference ratios SIR1 and SIR2. Here, the
sources Si(z) are assumed to be separated at the out-
puts Yi(z). This does not lose generality.

σ2
s1 =

1
2π

N∑
i=1

∫ π

−π

|Aii(ejω)Si(ejω)|2dω (58)

σ2
i1 =

1
2π

N∑
k=1

N∑
i=1
�=k

∫ π

−π

|Aki(ejω)Si(ejω)|2dω (59)

SIR1 = 10 log10

σ2
s1

σ2
i1

(60)

σ2
s2 =

1
2π

N∑
i=1

∫ π

−π

|Aii(ejω)|2dω (61)

σ2
i2 =

1
2π

N∑
k=1

N∑
i=1
�=k

∫ π

−π

|Aki(ejω)|2dω (62)

SIR2 = 10 log10

σ2
s2

σ2
i2

(63)

σ2
s1 and σ2

s2 are the power of the signal source to be sep-
arated, and the related transfer function, respectively.
σ2

i1 and σ2
i2 are the power of the interference signal and

the related transfer function, respectively.
In evaluating the signal distortion, we assume that

Si(z) are dominant in Xi(z), and Hii(z)Si(z) can be
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used as the criteria. Furthermore, Si(z) are assumed
to be separated at Yi(z). Based on these assumptions,
four different measures, as shown below, are used to
evaluate signal distortion.

σ2
d1a =

1
2π

N∑
i=1

∫ π

−π

|Hii(ejω)Si(ejω)

− Aii(ejω)Si(ejω)|2dω (64)

σ2
d1b =

1
2π

N∑
i=1

∫ π

−π

(|Hii(ejω)Si(ejω)|

− |Aii(ejω)Si(ejω)|)2dω (65)

σ2
1 =

1
2π

N∑
i=1

∫ π

−π

|Hii(ejω)Si(ejω)|2dω (66)

SD1x = 10 log10

σ2
d1x

σ2
1

, x = a, b (67)

σ2
d2a =

1
2π

N∑
i=1

∫ π

−π

|Hii(ejω)

− Aii(ejω)|2dω (68)

σ2
d2b =

1
2π

N∑
i=1

∫ π

−π

(|Hii(ejω)|

− |Aii(ejω)|)2dω (69)

σ2
2 =

1
2π

N∑
i=1

∫ π

−π

|Hii(ejω)|2dω (70)

SD2x = 10 log10

σ2
d2x

σ2
2

, x = a, b (71)

Since BSS systems are unable to control amplitude of
the output signals, the output signals may differ from
the criteria in amplitude. In order to neglect this scal-
ing effect in calculating SD1x and SD2x, the average
power of Hii(ejω)Si(z), Aii(ejω)Si(z), Hii(ejω), and
Aii(ejω) are normalized to unity.

Since the signal distortion SDix are evaluated
based on the difference between the criteria and the
simulation results, the smaller SDix indicate the lower
signal distortion. The signal source separation SIRi are
evaluated by a signal to interference ratio. Therefore,
basically speaking, the larger SIRi assume the higher
separation performance. However, when the signal dis-
tortion is large, the separated signal includes the dis-
tortion components, and SIRi are not reliable. SIRi

should be evaluated under lower signal distortion.

6.4 Two Channel Speech Signal Sources

Simulation results regarding 2 channel speech signals
are summarized in Table 2.

In the time domain implementation, TIME is not
good in the signal distortion. SIRi in TIME, which

Table 2 Comparison of learning algorithms of BSS systems
for 2 channel speech signals.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

TIME 12.2 5.56 0.25 -2.94 0.57 -3.82

TIME (MDP) 3.98 2.90 -10.3 -13.6 -8.24 -12.3

TIME (DF) 8.33 4.33 -12.1 -16.2 -15.4 -19.9

FREQ(1) 7.37 2.61 -6.23 -8.67 -2.82 -2.95

FREQ(1+PB) 15.2 6.59 -23.1 -27.1 -16.9 -18.8

FREQ(1+DF) 9.68 6.38 -13.5 -18.1 -15.1 -18.3

FREQ(2) 13.0 12.9 -9.43 -15.1 -10.9 -13.9

FREQ(2+PB) 14.3 11.6 -16.9 -20.6 -16.9 -18.9

FREQ(2+DF) 19.8 11.8 -24.6 -28.1 -17.9 -20.6

Table 3 Similarity between Hij(z) and Aij(z) for 2 channel
speech signals.

Methods SD1a SD1b SD2a SD2b

TIME 2.44 -0.25 2.03 -0.63

TIME (MDP) -9.36 -10.3 -8.53 -9.39

TIME (DF) -1.14 -5.00 -5.83 -8.12

FREQ(1) 3.80 -4.87 -0.42 -0.55

FREQ(1+PB) 2.19 -2.41 -2.56 -3.16

FREQ(1+DF) -0.21 6.51 -4.08 -5.11

FREQ(2) 3.89 -5.57 -0.31 -1.00

FREQ(2+PB) 2.21 -1.92 1.38 0.43

FREQ(2+DF) 3.99 -5.39 -0.03 -0.76

are higher than the others, have no meaning due to the
large signal distortions. TIME (MDP) can improve the
signal distortion as expected. However, its SIRi are
not good due to the remaining interference Aij(z)Sj(z)
at the output Yi(z) as discussed in Sec.4.1.

Similarity between Hij(z) and Aij(z) is evaluated
by using SDix defined by Eqs.(67) through (71), where
Hii(z), Aii(z) and Si(z) are replaced by Hij(z), Aij(z)
and Sj(z), respectively. Simulation results are shown in
Table 3. TIME (MDP) has the smallest values. This
means Aij(z) approaches to Hij(z) in TIME (MDP)
and the source separations are degraded. When the
learning rate μ in Eq.(28) is decreased, SIRi may be
improved, at the same time SDix are increased. Thus,
it is difficult to achieve high performances in both SIRi

and SDix simultaneously.
On the other hand, the proposed method TIME

(DF) can improve the signal distortion, while main-
taining relatively high SIRi.

In the frequency domain implementation, the con-
ventional method FREQ(1) is not good in both SIRi

and SDix. FREQ(1+PB) can provide good perfor-
mances in both SIRi and SDix, which are higher
than those of the proposed method. Furthermore,
FREQ(2) can improve both SIRi and SDix compared
to FREQ(1). However, its SDix are not sufficient. The
improved conventional method FREQ(2+PB) can im-
prove SDix from FREQ(2). However, the proposed
method FREQ(2+DF) can improve more in both SIRi

and SDix than FREQ(1+PB) and FREQ(2+PB).
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Table 4 Comparison of learning algorithms of BSS systems
for 2 channel stationary colored signals.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

TIME 9.49 7.07 -0.28 -3.11 -0.69 -4.99

TIME (MDP) 4.49 2.20 -15.7 -18.8 -13.7 -16.5

TIME (DF) 8.05 4.07 -14.4 -16.6 -10.4 -13.2

FREQ(1) 4.93 4.32 -3.62 -5.03 -3.67 -4.28

FREQ(1+PB) 3.22 1.51 -12.7 -14.3 -7.83 -9.38

FREQ(1+DF) 7.63 4.06 -18.4 -20.8 -10.8 -14.1

FREQ(2) 5.22 2.82 -12.2 -14.3 -7.42 -9.44

FREQ(2+PB) 5.35 2.62 -14.1 -15.8 -8.39 -10.7

FREQ(2+DF) 5.67 2.72 -13.7 -15.7 -8.27 -11.1

6.5 Two Channel Stationary Colored Signal Sources

2nd-order AR models are used to generate stationary
colored signals. The amplitude responses of Hii(z),
which are the criteria for the signal distortion, are
shown in Fig.2. The broken lines show amplitude re-
sponses of S1(z) and S2(z). This is because the fre-
quency bands, where their amplitude responses have
large values, are meaningful. The horizontal axis is the
frequency ranging from 0 to fs/2 = 4000 Hz, where
fs = 8000 Hz is the sampling frequency. The frequency
components are mainly located around 1540 Hz and
2460 Hz. SIRi and SDi are summarized in Table 4.

In the time domain implementations, the signal
distortions in TIME are not good. |Aij(ejω)| are shown
in Fig.3. |Aii(ejω)| are very different from the criteria
shown in Fig.2. They amplify the output signal spectra
outside the signal bands. This is due to the degree of
freedom in the FF-BSS systems as discussed in Sec.3.2.
The signal distortions can be reduced by TIME (MDP).
However, SIRi are not good as shown in Table 4. The
proposed method TIME (DF) can improve both SIRi

and SDix. |Aij(ejω)| are shown in Fig.4. |Aii(ejω)| are
similar to |Hii(ejω)| in the signal bands, and |Aij(ejω)|
are small in the interference bands. However, in the
frequency bands, where the signal source spectra are
small, |Aii(ejω)| and |Aij(ejω)| are somewhat different
from the criteria. Because the learning process is con-
trolled by the output signals, whose spectra are related
to the signal source spectra.

In the frequency domain implementations, FREQ
(1) is not good in both properties. FREQ(1+PB) can
improve SDix, while maintaining SIRi lower level. On
the other hand, the proposed method FREQ(1+DF)
can provide very good performances in both properties.

FREQ(2) can improve SDix compared with
FREQ(1). Even though FREQ(2+PB) and FREQ(2+DF)
can improve SDix slightly, their differences are not so
much. In this case, FREQ(1+DF) can provide the best
performances in both SIRi and SDix.

6.6 Three Channel Speech Signal Sources

The distortion-free constraint of Eq.(45) is applied for

0 1000 2000 3000 4000
0

1

2

3

4

5

H
11S

1

frequency 0 1000 2000 3000 4000
0

1

2

3

4

5

H
12

S
2

frequency

0 1000 2000 3000 4000
0

1

2

3

4

5

H
21

S
1

frequency
0 1000 2000 3000 4000

0

1

2

3

4

5

H
22

S
2

frequency

Fig. 2 Amplitude responses of Hji(z) and Si(z) for colored
signals.
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Fig. 3 Amplitude responses Aki(z) obtained by TIME and
Si(z) for colored signals.
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Fig. 4 Amplitude responses Aki(z) obtained by TIME(DF)
and Si(z) for colored signals.

3 channel signal sources. Simulation results are listed
in Table 5. Similar results are obtained as in the previ-
ous simulations. FREQ(1+PB) and FREQ(2+PB) can
improve SDix from FREQ(1) and FREQ(2), respec-
tively. FREQ(1+PB) is also better than FREQ(1+DF)
as in the 2-channel speech signal. Thus, the conven-
tional method is better than the proposed method in
the learning algorithm given by Eq.(20). However, the
proposed method FREQ(2+DF) can still provide good
performances for all measures.
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Table 5 Comparison of learning algorithms of BSS systems
for 3 channel speech signals.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

TIME 13.3 7.58 0.50 -2.48 -0.71 -4.65

TIME (MDP) 6.25 4.36 -8.02 -11.2 -10.2 -14.1

TIME (DF) 8.00 5.24 -14.0 -17.9 -17.1 -20.5

FREQ(1) 11.2 5.32 -10.4 -16.1 -4.39 -4.52

FREQ(1+PB) 15.9 8.61 -19.5 -24.2 -17.7 -19.7

FREQ(1+DF) 8.50 7.36 -14.7 -21.1 -16.3 -18.7

FREQ(2) 17.2 10.3 -13.4 -19.4 -13.9 -16.4

FREQ(2+PB) 16.3 9.68 -17.3 -21.1 -18.0 -19.9

FREQ(2+DF) 16.1 9.56 -24.1 -28.4 -20.1 -21.7

6.7 Comparison between FREQ (1+DF) and FREQ
(2+DF)

Properties of FREQ(1+DF) and FREQ(2+DF), which
are recognized from the simulation results, are sum-
marized as follows: FREQ(1+DF) is effective for sta-
tionary signals, and FREQ(2+DF) is useful for non-
stationary signals. Furthermore, we have confirmed
that FREQ(2+DF) can provide good performances for
a combination of stationary and non-stationary signals.
However, comparison between them should be more in-
vestigated taking spectra of the sources, stationary or
non-stationary properties and combinations of different
kinds of the sources into account.

6.8 Permutation Problem

In the simulation, we assume that the microphone of
Xi(z) are located close to the sources Si(z). There-
fore, the transfer gain from Si(z) to Xi(z) is larger
than those from Si(z) to Xj(z), j �= i. Furthermore,
the initial guess of the separation matrix W (z) are set
to be the identity matrix I. Under these conditions,
we confirmed ’Permutation’ did not occur in our sim-
ulations. However, since the permutation is highly de-
pendent on the mixing process, possibility of the per-
mutation should be more investigated by changing the
conditions on the mixture.

7. Conclusion

In this paper, the condition, which satisfies both com-
plete separation and distortion-free simultaneously for
multi-channel FF-BSS systems, is derived. This condi-
tion expresses a relation among the filter coefficients of
the separation block, and is combined with the learn-
ing algorithms as the distortion-free constraint. The
new learning algorithms can be applied to the BSS sys-
tems implemented in both the time domain and the
frequency domain. Compared with the conventional
method [13], the proposed method adjusts the separa-
tion block so as to satisfy both source separation and
signal distortion reduction simultaneously. Simulation
results demonstrated one of the proposed methods can

provide good performance.
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Appendix A: Derivation of Eq.(45)

detW (z) is given by

det W (z) =
N∑

k=1

Wjk(z)(−1)j+k detM jk(z). (A· 1)

In general, Ŵjj(z) is expressed as

Ŵjj(z) = (−1)2j detM jj(z) = detM jj(z). (A· 2)

From Eqs.(44), (A· 1) and (A· 2), we obtain

det M jj(z) =
N∑

k=1

Wjk(z)(−1)j+k detM jk(z). (A· 3)

In this equation, Wjj(z) is extracted.

det M jj(z)(1 − Wjj(z)) =

N∑
k=1
�=j

Wjk(z)(−1)j+k detM jk(z) (A· 4)

detM jk(z) is further rewritten as:

detM jk(z) =
N∑

l=1
�=j

Wlj(z)κ(j, k, l) detmlj(z) (A· 5)

κ(j, k, l) =
{

(−1)l+j (l < k)
−(−1)l+j (l ≥ k) (A· 6)

where mlj(z) is an (N − 2) × (N − 2) minor matrix,
i.e. removing the l-th row, j-th column from M jk(z).
Therefore, the right hand side of Eq.(A· 4) is rewritten
as:

−
N∑

k=1
�=j

Wjk(z)
N∑

l=1
�=j

Wlj(z)κ(k, k, l) detmlj(z) (A· 7)

= −wT
row,j(z) adjM jj(z)wcol,j(z). (A· 8)

Finally, this results in the equation given in Eq.(45).

Wjj(z) = 1 + wT
row,j(z)

adjM jj(z)
detM jj(z)

wcol,j(z) (A· 9)

= 1 + wT
row,j(z)M−1

jj (z)wcol,j(z). (A· 10)

Appendix B: Derivation of Eqs.(56) and (57)

Equation (55) is rewritten as:

Kw−1∑
l=0

Kw−1∑
l′=0

w̃jj(n + 1, l)w̃jj(n + 1, l′)z−(l+l′)

−
Kw−1∑

l=0

w̃jj(n + 1, l)z−l (A· 11)

=
Kw−1∑
l1=0

Kw−1∑
l2=0

w12(n + 1, l1)w21(n + 1, l2)z−(l1+l2).

In Eq.(A· 11), coefficients of the term z0 are related by

w̃2
jj(n + 1, 0) − w̃jj(n + 1, 0)

= w12(n + 1, 0)w21(n + 1, 0). (A· 12)

This equation is solved for w̃jj(n + 1, 0), then Eq.(56)
is obtained.

Furthermore, coefficients of the terms zl, (l > 0)
are expressed as follows :
Coefficients of the first term in the left hand side in
Eq.(A· 11) :

l∑
k=0

w̃jj(n + 1, k)w̃jj(n + 1, l − k). (A· 13)

Coefficients of the second term in the left hand side in
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Eq.(A· 11) :

w̃jj(n + 1, l). (A· 14)

Coefficients of the right hand side in Eq.(A· 11) :

l∑
l1=0

w12(n + 1, l1)w21(n + 1, l − l1). (A· 15)

In Eq.(A· 13), w̃jj(n + 1, l) is separated from the sum-
mation as follows :

2w̃jj(n + 1, 0)w̃jj(n + 1, l)

+
l−1∑
k=1

w̃jj(n + 1, k)w̃jj(n + 1, l − k). (A· 16)

Therefore, coefficients of the terms zl, (l > 0) in
Eq.(A· 11) are related by

(2w̃jj(n + 1, 0) − 1)w̃jj(n + 1, l)

+
l−1∑
k=1

w̃jj(n + 1, k)w̃jj(n + 1, l − k)

=
l∑

l1=0

w12(n + 1, l1)w21(n + 1, l − l1). (A· 17)

Equation (A· 17) is solved for w̃jj(n+1, l), then Eq.(57)
is derived.
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