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SUMMARY A nonlinear time series predictor was proposed,
in which a nonlinear sub-predictor (NSP) and a linear sub-
predictor (LSP) are combined in a cascade form. This model is
called “hybrid predictor” here. The nonlinearity analysis method
of the input time series was also proposed to estimate the net-
work size. We have considered the nonlinear prediction problem
as a pattern mapping one. A multi-layer neural network, which
consists of sigmoidal hidden neurons and a single linear output
neuron, has been employed as a nonlinear sub-predictor. Since
the NSP includes nonlinear functions, it can predict the nonlin-
earity of the input time series. However, the prediction is not
complete in some cases. Therefore, the NSP prediction error is
further compensated for by employing a linear sub-predictor af-
ter the NSP. In this paper, the prediction mechanism and a role
of the NSP and the LSP are theoretically and experimentally an-
alyzed. The role of the NSP is to predict the nonlinear and some
part of the linear property of the time series. The LSP works
to predict the NSP prediction error. Furthermore, predictabil-
ity of the hybrid predictor for noisy time series is investigated.
The sigmoidal functions used in the NSP can suppress the noise
effects by using their saturation regions. Computer simulations,
using several kinds of nonlinear time series and other conventional
predictor models, are demonstrated. The theoretical analysis of
the predictor mechanism is confirmed through these simulations.
Furthermore, predictability is improved by slightly expanding or
shifting the input potential of the hidden neurons toward the
saturation regions in the learning process.
key words: prediction, nonlinear, time series, neural network,
FIR filter, noise robustness

1. Introduction

The linear signal processing tools are insufficient to deal
with nonlinear time series processing. On the other
hand, neural networks are useful for nonlinear adap-
tive signal processing. They have been applied success-
fully in a variety of signal and information processing
fields [1],[2]. One of these fields is the nonlinear time
series prediction [3]–[10].

We have considered the nonlinear prediction prob-
lem as a pattern mapping one. A multi-layer neural
network, which consists of sigmoidal hidden neurons
and a single linear output neuron, has been employed
as a nonlinear sub-predictor (NSP). Since the NSP in-
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cludes nonlinear functions, it can predict the nonlinear-
ity of the input series. However, the prediction is not
complete in some cases. So, the prediction error of the
NSP is further compensated for by employing a linear
sub-predictor (LSP) after the NSP. Also, a nonlinearity
analysis method for the time series has been proposed
to estimate the predictor size [11]–[13].

In this paper, prediction mechanism, that is, a role
of the NSP and the LSP will be theoretically discussed.
Actual time series usually includes some noise. So, pre-
dictability of noisy nonlinear time series by the hybrid
predictor will be investigated. Simulation results, us-
ing several kinds of nonlinear time series and other con-
ventional predictors, will be demonstrated in order to
confirm validity of the theoretical discussions.

2. Hybrid Nonlinear Predictor

2.1 Network Structure

Figure 1 demonstrates the structure of the hybrid pre-
dictor [12]. As a first stage of the predictor, we employ a
multi-layer neural network (MLNN), which is good for
pattern mapping. It is called a nonlinear sub-predictor
(NSP). It consists of sigmoidal hidden neurons and a
single linear output neuron. The NSP is trained by the
supervised learning algorithm using the sample x(n) to
be predicted as the target. This means the NSP itself
is trained as a single predictor.

Since the NSP includes nonlinear functions, it can
predict the nonlinearity of the input time series. How-
ever, the prediction is not complete in some cases. So,
the NSP prediction error is further compensated for by
employing a linear finite impulse response (FIR) sub-

Fig. 1 Structure of the hybrid predictor.
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predictor (LSP) after the NSP. The LSP is trained by
using x(n) as the target too. Thus, the same target is
used for both the NSP and the LSP.

The reason why we use x(n) as the target for the
NSP is explained as follows: First, it is difficult to ob-
tain the target only for nonlinear prediction. Second,
since the NSP has a linear output neuron, the linear
prediction is also possible to some extent. So, non-
linear and some part of linear properties of the input
signal can be predicted by the NSP and the remaining
part is predicted by the LSP.

2.2 System Equations of NSP

The output of the jth hidden neuron vj(n) at time n is
expressed by

uj(n) =
N∑

i=1

wjix(n− i) + θj , (1)

vj(n) = fh(uj(n)), j = 1, 2, . . . L, (2)

where wji is the connection weight from the ith input
node to the jth hidden neuron. L is the number of
the hidden neurons and θj is the bias. The activation
function fh() used in the hidden neurons is a sigmoid
function given by

fh(x) =
1

1 + exp(−x)
. (3)

The output layer contains only one linear neuron. Its
output y1(n) is expressed by

u(n) =
L∑

j=1

wjvj(n) + θ, (4)

y1(n) = fo(u(n)) = u(n), (5)

wj is the connection weight from the jth hidden neuron
to the output neuron and θ is the bias. The connection
weights wji and wj , and the biases θj and θ in the NSP
are adjusted by the back-propagation algorithm.

On the other hand, the LSP coefficients are ad-
justed by the least mean square (LMS) algorithm.
The weights of both sub-predictors are adjusted on a
pattern-by-pattern basis.

2.3 Prediction Error Evaluation

The prediction error of the NSP is

eNSP (n) = x(n) − y1(n). (6)

The instantaneous squared error of the NSP is

ξNSP (n) =
1
2
e2

NSP (n). (7)

The mean square error MSE over an epoch is

MSENSP =
1
M

M∑
n=1

ξNSP (n), (8)

where M is the number of samples in one epoch. The
mean squared error at the LSP output is calculated by
the same way. The normalized root-mean-square error
(NRMSE) will be used to express the prediction error
and it is calculated as

NRMSE =
√
MSE/Ps, (9)

where MSE indicates the mean squared error at the
output of the NSP and the LSP. Ps = (xTx)/M is the
input signal power. x is the vector contains the input
samples. T is the transposition operator.

3. Prediction Mechanism Analysis

From Eq. (6), y1(n) can be expressed as

y1(n) = x(n) − eNSP (n). (10)

The LSP is the FIR filter with K taps, then its output
y(n) can be expressed by

y(n) = w0y1(n) + w1y1(n− 1) + . . . +
wK−1y1(n−K + 1). (11)

Substituting Eq. (10) for w0y1(n) in Eq. (11), we have

y(n) = w0(x(n)− eNSP (n))+ w1y1(n−1) +. . . +
wK−1y1(n−K + 1)

= w0x(n)+[−w0eNSP + w1y1(n−1) +. . . +
wK−1y1(n−K + 1)]. (12)

Furthermore, we set

y2(n) = w1y1(n− 1) + . . . +
wK−1y1(n−K + 1)]. (13)

If we can assume w0 ≈ 1, then Eq. (12) can be modified
as

y(n) = x(n) − [eNSP (n) − y2(n)]. (14)

The final prediction error becomes

efinal(n) = x(n) − y(n)
= eNSP (n) − y2(n). (15)

This means that the role of the LSP is to predict only
the prediction error caused by the NSP. eNSP (n) may
include both nonlinearity and linearity. If nonlinearity
is dominant, then it cannot be predicted by the LSP.
Therefore, it is desirable to predict the nonlinearity by
the NSP.

As a result, prediction mechanism can be divided
into two stages. In the first stage, nonlinear and some
part of linear properties of the input time series are
predicted by the NSP. In the second stage, the NSP
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prediction error is compensated for by the LSP. This
is also another reason why we use the same target for
both the NSP and the LSP.

When w0 ≈ 1 cannot be held, Eq. (15) will be

efinal(n) = (1 − w0)x(n) + w0eNSP (n) − y2(n)
= [eNSP (n) + (1 − w0)y1(n)] − y2(n).

(16)

The target of y2(n) is changed from eNSP (n) to
eNSP (n)+(1−w0)y1(n). Since y1(n) is controlled so as
to approach to x(n), then y1(n) contains nonlinearity,
which cannot be predicted by the LSP. Therefore, after
the learning process, if w0 ≈ 1 is not held, the predic-
tion is not optimum by the proposed method. In other
words, the hybrid predictor should be optimized so as
the condition w0 ≈ 1 may be held.

Furthermore, we investigate the contribution of the
NSP and the LSP in the overall performance by the
following ratio.

β = P1/P2, (17)

where, P1 and P2 are the power of the NSP output y1(n)
and the one-step linear prediction y2(n), respectively.

The above discussion concerning the following two
items will be investigated through computer simula-
tions.
• The NSP can predict nonlinear property of the time
series.
• w0 is close to unity for good nonlinear prediction.

4. Nonlinearity Analysis of Time Series

Nonlinearity analysis of the time series of interest is
very important for estimating size of the NSP and for
analyzing the prediction mechanism. A nonlinearity
analysis method proposed in [12], will be explained once
more because it will be used later in the simulation.

The prediction is equal to mapping a set of the
past samples onto the next sample to be predicted.
The multi-layer neural network is good for this kind
of pattern mapping. The degree of the difficulty of the
mapping is closely related to the nonlinearity. The nec-
essary number of the past samples used for prediction,
that is, the number of the input samples of the predic-
tor, is determined by this nonlinearity analysis.

4.1 Input-Output Mapping

4.1.1 Impossible Mapping

We consider NT samples of the time series, that is,
x(1) · · ·x(NT). A vector of the past N samples denoted
Xn is mapped onto the next coming sample x(n) as

Xn = [x(n− 1), x(n− 2), . . . , x(n−N)]T , (18)

Xn ⇒ x(n), n = N + 1, N + 2, . . . , NT. (19)

Letting M be the total number of the above mappings,
it is given by M = NT −N .

We consider two different mappings.

Xi ⇒ x(i), (20)

Xj ⇒ x(j). (21)

If the following relation is satisfied

Xi = Xj , x(i) �= x(j), (22)

then, these two different mappings can not be realized
by the multi-layer neural network at the same time. If
such mappings exist, the network may fail to converge
at all. This problem can be overcome by increasing N .

4.1.2 Difficult Mapping

In this case two patterns are similar to each other, and
their targets are different from each other. It can be
expressed as

Xi ≈ Xj , x(i) �= x(j). (23)

Although this mapping is basically possible, it is still
difficultmapping. The learning may often take a very
long time. The key question is how to evaluate the
degree of this difficulty. We have introduced a nonlin-
earity analysis method for this purpose [12].

In order to measure the similarity among the in-
put patterns, we employ the Euclidean distance among
them.

dij = ‖Xi −Xj‖, i �= j. (24)

Similar patterns are selected based on dij using some
thresholdI . If dij satisfies

dij ≤ I, (25)

then Xi and Xj are selected as a similar pair. The
threshold I is determined by

I = αAx, (26)

where 0 < α ≤ 1 and Ax is expressed by

Ax =
1
M

N+M∑
n=N+1

| x(n) | . (27)

The process of selecting similar patterns is ex-
plained as follows: One pattern Xk of a set
{XN+1, XN+2, . . . , XN+M} is selected. Another pat-
tern Xi, i �= k, which satisfies

dki ≤ I, (28)

is selected as a similar member to Xk. A set of these
members is denoted Ωk. Thus,

Xi ∈ Ωk, dki ≤ I, (29)
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Xi ∈\ Ωk, dki > I, (30)

where N + 1 ≤ i ≤ N + M , and i �= k. Ωk is obtained
for all XN+1 · · ·XNT .

Next, the difference between x(i) and x(j), ‖x(i)−
x(j)‖, is investigated, where both Xi and Xj are in-
cluded in the same set Ωk. Let xk(i) be x(i) for the
input pattern Xi ∈ Ωk. The variance of xk(i) denoted
σ2

k is expressed as

µk =
1
Qk

∑
i

xk(i), Xi ∈ Ωk, (31)

σ2
k =

1
Qk

∑
i

(xk(i) − µk)2, (32)

where Qk is the number of the elements in Ωk. Further-
more, an average of σ2

k overall Ωk is used to estimate the
difficulty of mapping, that is, the degree of nonlinearity
of the entire time series.

σ2
M =

1
M

N+M∑
k=N+1

σ2
k. (33)

Furthermore, σ2
M is normalized by the variance of the

entire time series denoted σ2
x.

σ2 = σ2
M/σ2

x. (34)

4.2 Input Dimension Estimation of NSP

4.2.1 Estimation Based on σ2

A large σ2 means that similar patterns Xi are mapped
onto different samples x(i). The mapping of this time
series is difficult, in other words, the nonlinearity is
high. On the other hand, if σ2 is small, similar pat-
terns Xi are mapped onto similar samples x(i), then
the mapping is easy, and the nonlinearity is low.

Although σ2 is large for a small number of the past
N samples used in prediction, σ2 can be decreased by
increasing N . Thus, the necessary number of the input
samples of the NSP is determined by σ2. The threshold
I should be appropriately determined.

There is another nonlinearity. Xi and Xj , whose
distance ‖Xi − Xj‖ is large, are mapped onto similar
samples x(i) and x(j), whose distance ‖x(i) − x(j)‖ is
small. This problem belongs to pattern classification,
which is an easy problem for the multi-layer neural net-
works.

We can use a larger number of the NSP input sam-
ples than that estimated by σ2. However, it will cause
over learning, and good generalization is not guaran-
teed. Thus, the input samples should be limited under
the upper bound estimated by σ2.

4.2.2 Estimation Based on Nonlinear Model

The nonlinearity of the time series can be estimated by
σ2 introduced in Eq. (34). This means if σ2 is large,
then the linear prediction is difficult. However, in the
nonlinear prediction by the NSP, relation between the
nonlinear function fh() given by Eq. (3) and the model
which generates the nonlinear time series must be taken
into account. Consider an example given by

u(n) = a1x(n− 1) + a2x(n− 2), (35)

x(n) = fh(u(n)). (36)

Two input nodes and one output neuron with fh() are
enough for predicting x(n). However, σ2 of x(n) gen-
erated by Eq. (36) is not small.

In natural phenomena, generating models of non-
linear time series are usually very complicated. It is
often difficult to express the nonlinearity by a simple
equation. Even though the explicit equations of the
generating models are not obtained, the prediction can
be regarded as “pattern mapping.” Therefore, the NSP
input dimension will be estimated by σ2.

Consequently, the lower bound and the upper
bound of the NSP input dimension are given by the
model equation and σ2, respectively. We can search for
the optimum network size between them from a gen-
eralization view point. The generalization means the
prediction performance for testing data which are not
used in a training phase. How to combine σ2 and the
nonlinear model to estimate the NSP input dimension
will be more discussed in another paper.

In Sects.5 and 6, some examples will be shown re-
garding the above relations.

5. Simulation Results Using Hybrid Model

5.1 Nonlinear Time Series

Computer simulations have been done for a one-step-
ahead prediction task using three examples: Sunspot
data, Lake data and Chaotic data. Data file of
Sunspot time series is downloaded from Santa Fe public
home page via [5] statements. Lake data and Chaotic
data files are taken from the foppy disc accompanied
with [14]. They are shown in Fig. 2

Sunspot data is used as a benchmark for many
years by many researchers. We have used the record
of the sunspot data from the year 1700 to 1920 (221
samples) in the training phase and the data from 1921
to 1979 (59 samples) in the testing phase. The same
data were used in [3] and others. Lake data represent
the level of Lake Huron in the years 1875–1972 [14]. The
first 50 samples are employed in the training phase and
the latter 48 samples are employed in the testing phase.
Chaotic data is generated by the following equation.
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Fig. 2 Time series used in simulation.

x(n) = 4x(n− 1)(1 − x(n− 1)), 0 < x(0) < 1. (37)

The first 150 samples are used in the training phase
and the latter 50 samples are used in the testing phase.

5.2 Network Size Estimation

The NSP input dimension is estimated based on the
nonlinearity analysis discussed in Sect.4. The number
of hidden neurons and the number of the LSP taps are
estimated by try-and-error criterion taking the gener-
alization performance into account.

Table 1 shows the relations among the average
variance σ2 given by Eq. (34), the threshold I and the
number of the past N samples. I, II and III represent
I = 0.5Ax, 0.8Ax and Ax, respectively. a, b and c indi-
cate Sunspot, Lake and Chaotic data, respectively. By
increasing N , σ2 can be decreased.

The Chaotic data (c) has large σ2. Therefore, its
nonlinearity is high. This means the chaotic time series
is difficult to be predicted by a linear predictor.

On the contrary, the Lake data has small σ2 except
for N=4,6. Its nonlinearity is somewhat low. Thus, it
can be predicted by a linear predictor to some extent.

We can estimate the NSP input dimension based
on these results. As discussed in Sect.4.2, the nonlin-
earity analysis by using σ2 provides the upper bound
and the time series generating model should be taken
into account to determine the lower bound of the input
dimension.

As a result, the following network sizes are deter-
mined from a generalization view point. The network
size of the hybrid models, NSP(Input nodes-Hidden
neurons-Output neurons)+ LSP taps, become (12-8-
1)+ 10, (8-8-1)+5 and (4-6-1)+5 for Sunspot, Lake and
Chaotic data, respectively.

Sunspot data requires N=12, where σ2=0 with
I=Ax. Similar result was obtained in [15] and used

Table 1 σ2 given by Eq. (34). I, II and III represent I = 0.5Ax,
0.8Ax and Ax, respectively. a, b and c indicate Sunspot, Lake
and Chaotic data, respectively.

N 4 6 8 10 12
I a 0.122 0.044 0.001 0 0

b 0.2173 0.0061 0 0 0
c 0.209 0.096 0.040 0.011 0

II a 0.205 0.110 0.034 0 0
b 0.3866 0.1640 0.0113 0 0
c 0.462 0.258 0.130 0.046 0.011

III a 0.259 0.154 0.056 0.002 0
b 0.4555 0.2733 0.0405 0.0010 0
c 0.617 0.405 0.156 0.052 0.011

Table 2 σ2 given by Eq. (34) for Sunspot data. I = Ax.

Input samples, N 2 3 4 5 12
x(n) 0.4719 0.3250 0.2375 0.1813 0
y1(n) 0.4156 0.2906 0.2281 0.1531 0
eNSP (n) 0.0813 0.0156 0.0006 0 0

in [3]. For Lake data, N=8 is optimum, because the
nonlinearity is lower than that of Sunspot data. Since
Chaotic data are generated by the simple equation
given by Eq. (37), the NSP input dimension can be re-
duced to 4 in spite of the highest nonlinearity. Thus,
we must find the optimum size under the upper bound
determined by σ2.

5.3 Prediction Mechanism Analysis

Table 2 demonstrates the nonlinearity analysis results
for Sunspot data. σ2 of the input signal x(n), the NSP
output y1(n) in Eq. (5) and the error signal eNSP (n)
in Eq. (6) are shown. σ2 of y1(n) is close to that of
x(n). On the other hand, σ2 of eNSP (n) is well reduced.
This means the nonlinearity of the input signal is well
predicted by the NSP.

The LSP coefficients W=[w0, w1, . . . , wK−1] af-
ter training are WSunspot=[1.0266, 0.0079, −0.0215,
0.0772, −0.0651, 0.0502, 0.0479, −0.0885, 0.0951,
−0.0162], WLake=[0.9993 −0.2067 0.0763 0.0667
0.0521] and WChaotic=[1.0032, −0.0032, 0.0031, 0.0048,
0.0009]. From these results, it is clear that the first el-
ement w0 is very close to unity.

From the results shown in Table 2 and the LSP
coefficients, the prediction mechanism of the hybrid
predictor theoretically discussed in Sect.3 are verified.
Namely, the NSP can predict the nonlinearity of the
input time series. The LSP works to predict the NSP
prediction error eNSP (n) as shown in Eq. (15).

The ratio β of the NSP to the LSP output pow-
ers defined in Eq. (17) is 110.8, 558.8 and 14561 for
Sunspot, Lake and Chaotic data, respectively. β is very
large in all cases. This means the NSP can predict the
main part of the time series. Nevertheless, the predic-
tion performance is further improved by using the LSP
as will be shown in Sect.6.
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Thus, the role of the NSP and the LSP are clari-
fied. The main prediction is done by the NSP, and the
remaining part is compensated for by the LSP.

6. Comparison with Other Models

In this section, we compare the prediction performance
of the hybrid predictor, a linear FIR predictor and a
nonlinear MLNN predictor with a linear output neu-
ron. More comparison using other four kinds of predic-
tor was demonstrated in [12]. The results of computer
simulation using three kinds of the time series are tab-
ulated in Table 3. The MLNN predictor size is set to
be the same as that of the NSP in the hybrid predictor,
in order to examine the efficiency of using the LSP.

Compared to the other models, the hybrid pre-
dictor has the minimum prediction errors in all cases.
However, in the case of Lake data, the difference be-
tween the linear predictor and the others is small. Be-
cause the nonlinearity is not so high for Lake data as
shown in Table 1.

On the other hand, in the case of Chaotic data,
since the nonlinearity is high, the linear predictor does
not work well. Performance of the MLNN predictor is
almost the same as that of the hybrid predictor. Con-
tribution of the LSP is also very small, which can be
explained by a very large β=14561.

Figure 3 shows the output waveforms of Chaotic

Table 3 Comparison of NRMSE among different models us-
ing three kinds of time series. NRMSE is evaluated in testing
phase.

Model Sunspot Lake Chaos
FIR 12 taps 8 taps 12 taps

0.3831 0.0859 0.4400
MLNN (12-8-1) (8-8-1) (4-6-1)

0.2013 0.0721 0.0177
Hybrid (12-8-1)+10 taps (8-8-1)+5 taps (4-6-1)+5 taps

0.1684 0.0672 0.0155

Fig. 3 Predictor output waveforms for Chaotic data using
different predictors.

data using different models in the testing phase.

7. Effects of Noise in Nonlinear Prediction

In measuring physical phenomena, data transmission
and processing, noise cannot be avoided. Therefore, in
real world applications, noise effects must be investi-
gated.

7.1 Training Using Noisy Time Series

Training phase:
It is assumed that we can get noise-free time series and a
probability distribution function of noise. The training
is carried out using the noisy data as the input and
the noise-free data as the target. The noise used here
is Gaussian white noise. The training data sets are
prepared by adding 10 noise sets to the noise-free time
series. So, 10 noisy training data sets are used in one
epoch.

Effect of the training using the noisy time series
is evaluated. Especially, distribution of the input po-
tential of the hidden layer neurons, that is, uj(n) given
by Eq. (1), is investigated. The sigmoidal functions are
used in the hidden neurons. If uj(n) for all the noisy
data can be distributed mainly in the saturation re-
gions, then noise effects can be suppressed.

On the other hand, when spectra of the signal and
the noise are separated, noise reduction is also possible
by linear filters. However, the above separation is not
always guaranteed especially in nonlinear time series.

Testing phase:
After the training, the predictors are tested using other
samples of the time series and thenoise, which are not
used in the training phase. In this phase, the input
signal and the target are the noisy data and the noise-
free data, respectively. Furthermore, we employ the
following reference in order to evaluate the prediction
performance.

R =
√

(MSEnf + Pn)/Ps. (38)

MSEnf and Pn are the mean square prediction error
for the noise-free time series and the noise power, re-
spectively. The normalization by Ps is the same con-
dition as the previous measure defined in Eq. (9). The
meaning of R is the following: Since the noise used here
is white noise, which cannot be predicted, the noise will
remain just as it is. Therefore, the mean squared pre-
diction error becomes MSEnf + Pn. If the prediction
error obtained in the simulation is less than R, then
it can be said that the noise effect is compensated for
through the training, at the same time, the predictor
becomes robust against the additive noise.
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7.2 An Enhanced Learning Method

As discussed in Sect.7.1, if the input potential uj(n)
of the hidden neurons are located in the saturation re-
gions of the sigmoid function fh() in Eq. (3), effects
of the noise included in the input time series can be
suppressed. Since uj(n) is given by Eq. (1), it can be
shifted or expanded toward the saturation regions by
enlarging wji and θj . For this reason, the following
enhanced learning method is proposed for the NSP.

Stage 1: The NSP is trained by the back-
propagation algorithm in an ordinary fashion.

Stage 2: The NSP trained in Stage 1 is further
trained through the modified back-propagation algo-
rithm, in which the following enhancement is embed-
ded.

Let wji(n) and θj(n) be the connection weights and
the bias updated at the nth-epoch through the back-
propagation algorithm. At the same epoch, they are
further enhanced as follows:

(1 + rn)wji(n), 0 < r < 1,
(1 + rn)θj(n), 0 < r < 1. (39)

These values are denoted wji(n) and θj(n), respectively,
once more, and are used in the (n + 1)-th epoch of
the back-propagation algorithm. r is determined by
experience, resulting in a small value. This means effect
of rn will be vanished within some earlier epochs.

7.3 Simulation Results and Discussions

The nonlinearity, that is, σ2 of the noisy time series was
analyzed in our works. It is almost the same as that of
the noise-free time series, then the same network sizes
are used. The data are not shown in this paper.

Table 4 shows the NRMSE and R using three
kinds of predictors trained by using the noisy time se-
ries. In the case of Sunspot data, the hybrid predictor
is the best. The MLNN and the hybrid predictors have
almost the same NRMSE for Lake and Chaotic data.
The linear predictor works better in the case of Lake
data than that of Chaotic data, because of the high
nonlinearity of Chaotic data. Spectrum of Sunspot and
Lake data are somewhat concentrated within some fre-
quency band, however, that of Chaotic data is spread
over a whole frequency band.

However, all the NRMSE are larger than R, then
nonlinear prediction obtained by training using the
noisy time series is affected by the noise.

Table 5 shows the NRMSE for the hybrid pre-
dictor trained by the normal back-propagation (NBP)
and the enhanced back-propagation (EBP) algorithms
using both the noise-free and the noisy training data.
Sunspot data are used with the signal to noise ratio
S/N=29.5 dB, then R=0.172. The NRMSE obtained

Table 4 Comparison of NRMSE among different models
trained by using noisy time series. S/N=29.5 dB.

Model Sunspot Lake Chaos
R 0.1720 0.0742 0.0370
FIR 12 taps 8 taps 12 taps

0.2343 0.0941 0.4396
MLNN (12-8-1) (8-8-1) (4-6-1)

0.2296 0.0870 0.0664
Hybrid (12-8-1)+10 taps (8-8-1)+5 taps (4-6-1)+5 taps

0.1864 0.0875 0.0655

Table 5 NRMSE for noisy Sunspot data using hybrid pre-
dictor trained by normal and enhanced back-propagation algo-
rithms. S/N=29.5 dB.

Learning method NBP EBP R
Noise-free training data 0.170 0.156 0.172
Noisy training data 0.186 0.168

Fig. 4 Histogram of input potential for two hidden neurons of
NSP trained by NBP and EBP algorithms. Sunspot data are
used.

by the NBP using the noise-free training data is almost
the same as R. This means the white noise cannot be
predicted. It remains as it is as assumed in Sect.7.1.
When the noisy training data are used, the NRMSE
is increased.

On the contrary, the EBP algorithm with r=0.01
in Eq. (39), can reduce the NRMSE under R. This
means noise effects can be suppressed by the new train-
ing method. In this method, still the noisy training
data is not useful.

Figure 4 shows the histogram of the input poten-
tial uj(n) of two hidden neurons. The distribution of
uj(n) obtained by the EBP algorithm are expanded and
shifted toward the saturation region of the sigmoidal
function compared to those obtained by the NBP algo-
rithm as expected in Sect.7.2.
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8. Conclusions

In this paper, the prediction mechanism and a role of
the NSP and the LSP of the hybrid predictor have been
theoretically and experimentally analyzed and clarified.
At the NSP output, the nonlinearity and some part
of linearity of the input time series is predicted. A
role of the LSP is to predict the NSP prediction er-
ror. Predictability for the noisy time series has been
investigated. Training using the noisy time series is not
useful. In the back-propagation algorithm, slightly en-
hancing the connection weights and the bias can reduce
the noise effects.

Computer simulations have been demonstrated us-
ing the linear, the MLNN and the hybrid predictors for
Sunspot, Lake and Chaotic data. Properties of these
predictors are analyzed taking the nonlinearity of the
time series into account.
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