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Abstract: A blind source separation (BSS) method with an exponentially weighted
(EW) stepsize has been proposed for convolutive mixtures with reverberations.
The EW stepsize is also useful for general adaptive filters under the conditions
without reverberations. This paper analyzes usefulness of the EW stepsize on
the reverberations. In simulations, high-order filters are used in a separation
block. Two kinds of conditions for a mixing process, that is with and without
reverberations, and two kinds of stepsizes, that is a constant and the EW stepsizes,
are taken into account. In the mixing process without reverberations, the EW
stepsize can realize fast convergence, however, the final separation results are the
same as using the constant stepsize. When reverberations are included, the EW
stepsize can provide fast convergence and the good final results. A constant stepsize
cannot suppress effects of reverberations. From these results, usefulness of the EW
stepsize for reverberations is confirmed.

Keywords: Blind source separation, Convolutive mixture, Reverberation, Stepsize

1. INTRODUCTION Since, in many applications, mixing processes are
convolutive mixtures, FIR or IIR filters are re-
quired in unmixing processes. Several methods in

a time domain and a frequency domain have been

Signal processing including noise cancelation, echo
cancelation, equalization of transmission lines, es-
timation and restoration of signals have been be-
coming very important technology. In some cases,
we do not have enough information about signals
and interference. Furthermore, their mixing and
transmission processes are not well known in ad-
vance. Under these situations, blind source sepa-
ration (BSS) technology using statistical property
of the signal sources have become very important

[1-[7),[13],[14].
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proposed. However, when high-order filters are
required in the feedbacks, a learning process be-
comes unstable and separation performance is not
enough [8]-[12]. An approach has been proposed
taking some practical assumption into account
[15]. High-order FIR filters can be used in an
unmixing process. Reverberations must be taken
into account in real environment, which causes
severe condition in BSS. A learning algorithm
with an exponentially weighted (EW) stepsize has



been proposed [17]. The exponential weighting
is automatically adjusted in a learning process.
However, the EW stepsize is also useful in general
adaptive filters under conditions without rever-
berations. They should be discriminated under
real conditions, in which very high-order filters are
required in a separation block.

In this paper, quasi-real conditions are taken into
account. 1000 tap FIR filters are used in the
separation block. The convolutive mixtures with
and without reverberations, and both the EW and
constant stepsizes are taken into account.

2. NETWORK STRUCTURE AND
EQUATIONS

Figure 1 shows a fully recurrent BSS model pro-
posed by Jutten et all [3]. The mixing stage has
convolutive structure. FIR filters are used in feed-

back circuits of an unmixing block as shown in
Fig.2.

Cik(Lk-1)

Fig. 2. FIR filter used for C3(z) and Ci5(2) in
feedback.

The signal sources s;(n),7 = 1,2,---, N are com-
bined through the unknown convolutive mixture
block, which has the impulse response h;;(m), and
are sensed at N points, resulting in z;(n).

N Mj;;—1

zi(n) =Y > hji(m)si(n —m)

i=1 m=0

(1)

The output of the unmixing block y;(n) is given
by

N Ljp—1
yi(n) =a;(n) = > Y cipDue(n—1)  (2)
PP

This relation is expressed using vectors and ma-
trices as follows:
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z(n)=H"s(n) (3)
y(n) =2(n) — C*§(n) (4)
s(n) = [s] (n), 85 (n), -, sy (n)]" (5)
si(n) = [si(n),si(n —1),---, s;(n — M; + 1)]{6)
z(n) = [z1(n), z2(n), -, 25 (n)]" (7)
y(n) = [y1(n), y2(n), -, yn(n)]" (8)
g(n) = lyi (n),y5 (n),-- -, yn(m)]" (9)
Y (n) = [ye(n), ye(n — 1), -, yr(n — Ly, + 1OP)

hll h21 PR th
his hy ... hno

H= (11)
th h2N PR hNN
hji = [h;i(0), hyi(1), - -, hya( My — DT (12)
0 exn CN1
ci2 O CN2
c=| . . (13)
CiN CoN ... 0

eir = 1eji(0),¢jr(1), - er(Ljn = 1)]T (14)
(15)
Letting S;(2), X;(z) and Yi(z) be z—transform

of s;(n), z;(n) and yi(n), respectively, they are
related as follows:

X(z)=H(2)S(2) (16)
Y(z)=X(z) - C(2)Y (2) (17)
S(2)=151(2), 82(2), -+, Sn(2)]T (18)
X(2)=[X1(2), X2(2),- -, Xn(2)]T (19)
Y(2) = [Yi(2),Ya(2), -+, Y (2)]T (20)

From these expressions, a relation between the
signal sources and the unmixing outputs becomes

Y(2)=(I+C(2))"' X(2)

(I +C(2)) " H(2)S(z)

(21)

In order to evaluate separation performance, the
following matrix is defined.

P(z) = (I+C(2)) 'H(2) (22)

If each row and column of P(z) has only a sin-
gle non-zero element, the signal sources s;(n) are
completely separated at the outputs yi(n). How-
ever, since equalization of H(z) is not guaranteed,
the separated signals have the following form.
Yj(z) =

P;i(2)5i(2) (23)



3. LEARNING ALGORITHM

The learning algorithm proposed for convolutive
BSS is briefly explained here [15]. For simplicity,
2-channel case is taken into account.

There are two cases, in which possible solutions
for perfect separation exist, as shown below.

Hgl(z)
Hu(z)

vi(n)= 1, 1(n)

le(z)
Taa(2) (24)

ya(n) = 35 2(n) (25)

(1) Ca(z)= Ci2(z) =

ng(z)
le(z)

yi(n)= 1, 2(n)

Hll(z)
o (o) (26)

ya(n) = 31 1(n) (27)

(2) Ca(z)=

Clz(z) =

It is assumed that delay time of Hj;(z) and
Hys(z) are shorter than that of Hai(z) and
Hj5(2). This means that in Fig.2, the sensor of X
is located close to s1(n), and the sensor of X5 close
to s3(n). From this assumption, the solutions in
the case (1) become causal systems. On the other
hand, the solutions in the case (2) are noncausal.

From Eq.(21), the outputs are expressed as

i) 1 [ 1 —Cia(e)
_Y2(z) 1 —C12(2)C21(2) | —C21(2) 1

[ Hi(2) Hiz(2) | [ 51(2)
x _H;(z) le(z)] |:S;(z):| (28)
1

1= C1a(2)C1(2)

[ Hi1(2) — Cra(2) Ho1(2) Hia(z) — 012(Z)H22(Z)]

x L Hgl(z) — Cgl(z)Hll(z) ng(z) — Cgl(z)le(Z)
" 58] 09)

Since Eq.(26) cannot be realized using causal
circuits, the diagonal elements of Eq.(29) cannot
be zero. On the other hand, the non-diagonal
elements can be zero. Therefore, a cost function
can be defined as follows:

Jj(n) = Elq(y;(n))] (30)

g() is an even function with a single minimum
point. By minimizing this cost function, Ci5(z)
and Cy(z) can approach to Eq.(24). Instead of
Elq(y;(n))], the instantaneous value ¢(y;(n)) is
used, and the gradient method can be applied.

Ji(n) = q(y;(n)) (31)

The gradient of Jj(n) becomes

8J;(n) _ 94(y;(n)) 9y;(n)
dce(l) — dy;(n) deu(l)
= (y;(n))ye(n — 1) (32)

cir(Dyr(n —1) (33)
=

o

q() is a partial derivative, which is an odd func-
tion. If k¥ = 1, then j = 2, and vice versa.
Therefore, the update equation of ¢ (1) is given

by

cjk(n—f- 1,1) :cjk(n,l) +chk(n,l) (34)
Acjr(n, 1) = pg(y;(n))yx(n — 1) (35)

The probability density function (pdf) of the
signal sources are assumed to be even functions.
Furthermore, the signal sources are statistically
independent to each other. Then, they satisfy

E[f(s1(n))g(s2(n))] = E[f(s1(n))]E]g(s2(n)36)
—0 (37)

: odd functions

£0,90)

If a very small stepsize p is used in Eq.(35), the
correction term can be regarded as E[§(y;(n))yx(n—
)]. Since, ¢(y;(n)) and yx(n — 1) are also odd
functions, then Eq.(37) can be held. This means
that as the correction terms are reduced, y;(n)
and y2(n) can approach to b, sy (n) and hl,s;(n),
respectively, .

4. A LEARNING ALGORITHM FOR
CONVOLUTIVE BSS WITH
REVERBERATIONS

4.1 Convergence Analysis

When reverberations occur, the assumption on
the transmission delay in the mixing process can-
not be held. A model including reverberations is
shown in Fig.3. H{,(z) and H},(z) express trans-
fer functions caused by reverberation, which has
a long transmission delay. H{,(z) and H},(z) are
not shown here for simplicity. By using the learn-
ing algorithm described in the previous section,
the following two terms can be reduced at X;.

Fig. 3. Convolutive BSS model with reverbera-
tions Hj,(z) and H},(z).



Hi{,(2)S1(2) — C12(2)H21(2)S1(2) — 0 (38)
)~ 7 o
H15(2)S2(2) — C12(2)Haa(2)S2(2) — 0 (40)
Cuts 123 o

H{,(z)/H21(z) can be also causal. In other words,
not only the S3(z) component but also the S;(2)
component can be cancelled by the signal through
the path of —C'2(2). However, the optimum forms
of C12(z) for canceling S>(z) and Sy (z) are differ-

ent.

In the same manner, at Xs,

H}y(2)S2(2) — Co1(2)Hy2(2)S2(2) — 0 (42)
Hy1(2)S1(2) — C21(2)H11(2)S1(2) — 0 (44)

Eqgs.(41) and (45) are the ideal solutions. However,
C15(2) and Cs;(z) cannot approach to these solu-

tions due to the reverberations given by Eqgs.(39)
and (43).

4.2 A Learning Algorithm with FExponential Scaling

Reverberations have a long delay, and from
Eqgs.(39) and (43), effects of reverberations appear
at the latter part of the impulse responses. For
this reason, the correction in the latter part is
suppressed. This can be done by controlling the
stepsize p exponentially along a delay line in the
FIR filters. The update equation is modified as
follows:

cjk(n +1, l) = cjk(n, l)
+ 1) f(y;(n)g(yr(n —1)) (46)
p()=per!, O0<r<1 (47)

u(l) should be proportional to the ideal solution.
However, it is not known beforehand. Therefore,
the exponential scaling is proposed here. pg is the
initial stepsize and ! is an exponential part.

5. SIMULATION
5.1 Simulation Conditions

Two channel blind source separation was simu-
lated. The stepsize is optimized for each combi-
nation of the input signals and with or without
reverberations. They include (a-1) white noise and
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no reverberations, (a-2) white noise and reverber-
ations, (b-1) speech signal and no reverberations,
(b-2) speech signal and reverberations. A constant
stepsize and the exponential stepsize are set to
(a-1) p = 0.0001, uo = 0.00078, 712 = 0.9933,
ro; = 0.9918, (a-2) p = 0.0003, po = 0.00078,
rio = 0.9883, ro; = 0.9822, (b-1) p = 0.00005,
uo = 0.00015, r15 = 0.9933, ro; = 0.9918, (b-
2) p = 0.0002, pup = 0.00015, r12 = 0.9883,
To1 = 0.9822.

The separation performance is evaluated by the
following Noise Reduction Ratio (NRR), defined
by using H(z) and P(z) in Eqs.(16) and (22)

2 s
1 .
0'335 = Z_: ? / |Hiz'(6]°'IT)|2dwT (48)
1 r w

7= or [ I TIPLT  (19)
JAi -
o2

SNR, =10log —= [dB] (50)
o

2
1 jw
O'ZS = Z ? / |Pii(ej T)|2dwT (51)

s
=1 Zr

2 = 1 Pii(e?“T)2dwT (52

oyc_ . ﬂ | JZ(e )| w ( )
e .
o2

SNR, =10log —‘; [dB] (53)
o-C

NRR=SNR,—- SNR, [dB] (54)

2 2
o2, and Oys

2
and o3,

express power of the selected signals
and JZS are that of the cross components.

Impulse responses of the convolutive mixture with
reverberations are shown in Fig.4. Furthermore,
those of the case without reverberations are shown
in Fig.5. In this simulation, almost the same
length FIR filters are used in the separation block
in both cases with and without reverberations. For
this purpose, the impulse responses in two cases
are different.

The ideal filter coefficients are shown in Figs.6
and 7. Thus, 1000 length FIR filters are used in
the separation block.

5.2 Separation Performance

NRR with several conditions are shown in Fig.8.
The signals sources are two different white noises.
In the first case without reverberations, even
though the EW stepsize can realize fast conver-
gence, the final NRR obtained by both the EW
and constant stepsize are the same. Therefore, in
this case, usefulness of the EW stepsize is to make
convergence fast.
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Fig. 4. Impulse responses in convolutive mixture
with reverberations.
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Fig. 5. Impulse responses in convolutive mixture

without reverberations.

In the second case with reverberations, the EW
stepsize can realize fast convergence like in the
first case. However, the learning curve with the
constant stepsize shows slow convergence and the
lower NRR compared with the EW stepsize. This
means, degradation of separation performance can
be suppressed by using the EW stepsize.

Figure 9 shows NRR for speech signals sources.
The almost same trend are shown.

6. CONCLUSIONS

Usefulness of the exponentially weighted (EW)
stepsize for the convolutive mixture with reverber-
ations has been comparatively investigate. In the
first case without reverberations, the EW stepsize
can realize fast convergence, the learning curve
of the constant stepsize can reach that of the
EW stepsize. In the case with reverberations, the
EW stepsize can provide fast convergence and a
good separation performance. On the contrary,
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Fig. 9. NRR for speech signal sources. Convolutive

mixtures with and without reverberations,
and constant and EW stepsizes are used.

the constant stepsize cannot suppress effects of
reverberations on the signal separation, and its
learning curve shows slow convergence and lower
separation performance.
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