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Abstract: This paper proposes a lattice predictor based adaptive Volterra filter,
and its convergence property is analyzed. In the adaptive Volterra filter (AVF),
the eigenvalue spread of a correlation matrix is extremely amplified, and its
convergence is very slow for gradient methods. A lattice predictor is employed
for whitening the input signal. Its convergence property is analyzed. For colored
signals, generated using an AR model, it can fast converge to the well reduced
level. However, the convergence is sensitive to error of the whitening. When the
reflection coefficients are updated, convergence is highly dependent on a time
constant parameter used in updating the reflection coefficients. In the case of
using a time variant AR model, that is nonstationary input signals, almost the
same convergence is obtained compared with the fixed AR model. Furthermore,
update of the reflection coefficients and the filter coefficients is not synchronized in
the conventional lattice predictor based adaptive filters. This effect is also analyzed.
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1. INTRODUCTION

Laud speakers in audio systems and small speak-
ers embedded in a mobile phone have some nonlin-
earity. When they are used in a remote conference
system and a visual phone, in which some echo are
caused, nonlinear echo cancellers are very impor-
tant.

Adaptive Volterra filters are one of hopeful can-
didates [1],[2],[3],[4]. It can express general non-
linearity. However, the Volterra polynomial has a
huge number of terms, and the same number of
filter coefficients are required. Furthermore, when
the input signal is colored, the eigenvalue spread
of a correlation matrix is extremely amplified, and
convergence is very slow for gradient methods.
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Many kinds of fast and stable learning algorithms
for adaptive Volterra filters have been proposed
[5],[3]. RLS algorithm is insensitive to the eigen-
value spread, at the expense of O(N?) computa-
tions. Another method is to combine a whitening
process and an adaptive FIR Volterra filter. The
Discrete Cosine Transform (DCT) has been ap-
plied to the whitening process [7]. Furthermore,
an error surface and convergence property have
been analyzed [8]. The DCT is not sufficient for
the whitening process. A linear FIR predictor
based on an AR model of the signal is good for
whitening. However, it requires some time delay,
and cannot be applied to some applications [6].

In this paper, in order to improve the whitening
process without any time delay, a lattice predic-



tor is employed for a whitening process. Conver-
gence properties are analyzed based on accuracy
of whitening, a time constant parameter, and non-
stationary input signals. The proposed and con-
ventional methods are compared with each other
through computer simulations by using colored
signals and real speech signals.

2. ADAPTIVE FIR VOLTERRA FILTER
2.1 Structure of AVF

Figurel shows a blockdiagram of an adaptive
FIR Volterra filter (AVF). When a second-order
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Fig. T. Adaptive FIR Volterra filter.

Volterra polynomial is used, the output y(n) is
given by
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2.2 FEigenvalue Spread Amplification

The eigenvalue spread x = Apaz/Amin of the
input signal z(n) is extremely amplified by trans-
forming it through the Volterra polynomial. Ex-
amples are shown in Table 1. The colored input
signal z(n) with x = 780.9 is transferred to the
Volterra polynomial terms having xy = 657100,
which is 841 times as large as that of z(n). For
this reason, convergence of the adaptive Volterra
filter is very slow for gradient methods.

Table 1. Eigenvalue spread amplifica-

tion
Signal Amin Amaz | Amaz/Amin
White Signal 0.716 1.359 1.898
‘White+Volterra 0.781 52.21 66.83
Colored Signal 0.08151 | 63.66 780.9
Colored+Volterra | 0.01003 6590 657100
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2.8 Whitening Input Signal

2.8.1. Discrete Cosine Transform  Figure 2 shows
the DCT with normalization [7]. The outputs
of the tap delay line z(n) = [z(n),z(n —
1),..,2(n — N + 1)] are transformed through the
DCT to g(n) = [g(n),q1(n),..,qnv-1(n)], and
they are normalized by its standard deviation oy ;.
The outputs s;(n) of this block are applied to
the Volterra polynomial generating 1st-order and
high-order terms. These terms are multiplied by
filter coefficients, and are accumulated, resulting
in the final output y(n). The DCT does not need
any time delay.
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Fig. 2. DCT whitening process with normaliza-
tion.

2.3.2. Linear FIR Predictor Based on AR Signal
Model When the signal can be modeled by the
output of an AR circuit driven by the white noise,
a linear FIR prediction error filter shown in Fig.3
is good for whitening. e(n) is used as the AVF
input.
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Fig. 3. Linear predictor based on FIR filter.

2.4 Position of Whitening in Nonlinear Filters

Two kinds of positions for the whitening are
shown in Figs.4 and 5, and are denoted Type-
A and Type-B, respectively. Any time delay is

DCT



not allowed in Type-A. Reason can be explained
as follows: Suppose the linear predictor shown in
Fig.3 is used in Type-A, and both the unknown
system and the AVF have the N-th order FIR
filter and a 2nd-order Volterra polynomial. The
output of the unknown system includes z(n —
1),t = 0,1,..,N — 1 and their high-order terms.
On the other hand, in the AVF part, e(n), which
comsists of z(n —14),i =0,1,..,L — 1, is the input
of the AVF, then z(n —i),s = 0,1,..,N + L —
1 and their high-order terms are included in its
output signal. Therefore, their transfer functions
are inherently different.

On the other hand, in Type B, any kinds of the
whitening process, with or without time delay,
can be employed. However, since the output of
the unknown system may be sound from a laud
speaker located in a conference room, it cannot
be applied to some applications, such as echo
cancellation.

x(m)
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Fig. 5. Whitening both adaptive filter and un-
known system inputs (Type-B).

3. LATTICE PREDICTOR BASED AVF
3.1 Circuit Structure

In practical applications, Type A is important.
Therefore, we employ the lattice predictor [9]
for the whitening process. The proposed lattice
predictor based AVF is shown in Fig.6. Under the
conditions the delay line order is N, the order of
the Volterra polynomial is M, the order of the
lattice predictor is L, and N > L, the order of
the transfer function Y (z)/X(z), and the number
of filter coefficients in both AVF in Fig.1 and
Fig.6 are the same. If the unknown system can be
modeled by using the FIR Volterra filter, the same
transfer function can be realized by the lattice

predictor based AVF.
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Fig. 6. Lattice predictor based AVF.
3.2 Reflection Coefficient Update

The reflection coefficients are updated by the
following equations [9].

2E[bys1 (n — 1) sy ()]
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(1) = VN — 1) 4 b1 (n— 1)1 (6))
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0<y<1
Em(n) = —Q—ZZ’:EZ; (6)

3.8 Synchronized Learning Algorithm

3.8.1. Lattice Predictor Based Adaptive Filters

Convergence property of the lattice predictor
based FIR adaptive filter has been analyzed, and
the synchronized learning algorithm has been pro-
posed [10]. Updating the reflection coefficients and
the filter coefficients are not synchronized, and
some error remain.

The synchronizing method [10] is described here.
The linear adaptive filter with the lattice predictor
is equivalent to the circuit shown in Fig.6, except
for the Volterra polynomial block. The filter co-
efficients w(n) is directly connected to b(n). The
output y(n) is

b(n) = K(n)z(n) (7)
y(n) = w’ (n)b(n) (8)

b(n) is a vector of the backward prediction error
bm(n), K(n) is a matrix consists of the reflection
coefficients, x(n) is the input, w(n) is the filter
coefficients. In the next iteration step, K(n) is
updated to K(n 4+ 1), and y(n + 1) and e(n +
1) are generated by using K(n + 1) and w(n).

W2(N-1,N-1)



However, w(n) is optimized for K(n) not K(n +
1). Therefore, e(n + 1) is not guaranteed to be
reduced. For this reason, w(n) is modified sa as,

b(n+1)=K(n)z(n+1) (9)
g(n +1)=wT(n)b(n + 1) (10)
bn+1)=K(n+1)z(n+1) (11)
y(n+1)=a" (n)b(n +1) (12)

g(n 4+ 1) can reduce the output error. Therefore,
the filter coefficients w(n) is modified as follows:

K" (n+1)w(n)= K" (n)w(n) (13)
o K'(n)
w(n) = mw(n) (14)

w(n) is used in the next iteration n + 1, instead
of w(n), for generating §(n + 1) and é(n + 1).
The filter coefficients are updated to w(n + 1) by
using é(n + 1) and w(n). A combination of K(n)
and w(n) is equivalent to that of K(n + 1) and
w(n). Thus, the output error is guaranteed to be
decreased.

4. SIMULATION AND DISCUSSIONS
4.1 Colored Signal

The colored signal is generated passing the white
noise through a 2nd-order AR model, and is ap-
plied to the adaptive Volterra filter. The number
of taps of the FIR filter is 50, and the order of
Volterra function is 2nd-order. The number of the
terms in the Volterra function is 1325.

4.1.1. DCT and Linear Predictor  The learning
curves for the AVF without whitening, and with
the DCT method in Type A and the linear pre-
dictor in Type B are shown in Fig.7. The NLMS

algorithm and stepsize=0.1 are employed.
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Fig. 7. Learning curves for colored signal, without

whitening, and with DCT and linear predic-
tion.
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From these results, convergence is very slow, when
the whitening process is omitted. The DCT can
improve convergence to some extent. The FIR
linear predictor in Type-B is good, because the
whitening is complete. However, this type cannot
be applied to echo canceler and so on.

4.1.2. Lattice Predictor Based AVF  Figure 8
shows the learning curves of the lattice predictor
based AVF. The reflection coefficients are cal-
culated in advance and fixed. If the reflection
coefficients are set to the ideal, convergence is
fast and the residual error is very small. However,
the convergence is sensitive to deviation of the
reflection coefficients. Assuming the output error
of -50dB, 5% deviation causes a long convergence
time, which is 3 times as long as the ideal case.
In this simulation, since the reflection coefficients
are fixed, the asynchronous update problem of
the reflection coefficients and the filter coefficients
does not exist.
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Fig. 8. Learning curve for colored signal by using

lattice predictor based AVF. Reflection coef-
ficients are fixed to ideal, 1%, 2%, and 5%
deviation.

Figure 9 shows the learning curves, in which
the reflection coefficients are updated based on
Eqgs.(3) through (6). Convergence depends on a
time constant -y, which control the reflection coef-
ficient update. From Eqgs.(4) and (5), when (< 1)
is very close to unity, the reflection coefficients k;
are very gradually adjusted. Untill v = 0.999999,
the convergence can be improved. The learning
curves for the lattice predictor almost saturate
around 50dB, however, it requires only 85,000
iterations until -40dB, while the DCT and the lin-
ear predictor need 320,000 iterations and 150,000
iterations as shown in Fig.7, respectively.

Figure 10 shows the learning curves for the time
variant AR model generating the colored signals.
The pole, re*?, of the AR model is controlled by

r=20.9 (15)
2mn

O(n) = %(1 +asin(Z55) (16)
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Fig. 9. Learning curve for colored signal by using

lattice predictor based AVF.

a is changed as 0.05, 0.1 and 0.2. 7 is set to
0.999999. The learning curves are almost the same
as in Fig.9, where the AR model is fixed. From
these results, the lattice predictor based AVF can
be useful for nonstationary input signals.
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Fig. 10. Learning curve for colored signal gener-

ated by time variant AR model.

4.2 Speech Signal

Speech signal is used as the input signal of the
AVF. Figures 11 and 12 show the learning curves
by using the DCT and the linear predictor, and
by using the lattice predictor, respectively. In the
former figure, the mean squared error in some
interval is normalized by the mean squared signal
in the same interval. In the latter case,
normalized by the mean squared signal in the

it is

enter interval. So, the curves are different. From
these results, the DCT cannot improve from the
NLMS without whitening. The linear predictor
almost converges at 300,000 iterations. On the
other hand, the lattice predictor converges at
30,000 iterations. Thus, convergence time can be
reduced to 1/10 of the FIR linear predictor.

5. CONCLUSIONS

In this paper, the lattice predictor based AVF has
been proposed. If the reflection coefficients are

400000
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Fig. 11. Learning curve for speech signal by using
DCT and linear predictor.
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Fig. 12. Learning curves for speech signal by using

lattice predictor.

ideal and are fixed, convergence is very good. It
is also insensitive to nonstationary input signals
generated by a time variant AR model. Its conver-
gence is dependent on accuracy of whitening. 5%
deviation of whitening requires a 3 times longer
convergence time. When the reflection coefficients
are updated, convergence depends on the time
constant parameter. Compared with the conven-
tional methods, convergence time can be improved
to 1/3~1/10 for stationary and nonstationary col-
ored signals.
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