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Abstract: A blind source separation (BSS), cascading a separation block and a
linearization block has been proposed for low-order nonlinear mixtures. In the
separation block, the signal sources are separated into each group, including
its high-order components. The high-order components are further suppressed
through the linearization block. The number of the sensors is increased from that of
the signal sources in order to cancel the noise components. In this paper, separation
performance for the reduced number of the sensors is analyzed. Effects of the
ratio of nonlinearity in the observed signals is also analyzed. Through theoretical
analysis and computer simulations, it is cleared that the theoretical number of the
sensors is the best, however, the reduced numbers can provide good separation
performance when the ratio of the nonlinearity is small.
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1. INTRODUCTION

In practical applications of a blind signal source
separation (BSS), processes of generating, mixing
and sensing signals include nonlinearity, caused by
loud speakers, microphones, amplifiers and so on.
Statistical independency is not enough to separate
the signal sources, some additional prior knowl-
edge are required. Furthermore, since a unique
solution is not guaranteed, some regularization
techniques are required [6]. For the post-nonlinear
(PNL) mixtures, a mirror structure BSS has been
mainly used [7]. Nonlinear distortion is suppressed
in the first stage assuming some prior conditions.
Spline nonlinear functions or spline neural net-
works have been applied to the linearization pro-
cess [3], [4]. Furthermore, a maximum likelihood

529

estimator has been applied [5]. Also, neural net-
works have been applied [8].

Assuming nonlinearity is limited to low-order
polynomial expressions, a BSS model cascading
a separation block and a linearization block has
been proposed [9],[10]. In the first block, sig-
nal groups, including the linear and high-order
components, are separated. In the second block,
the high-order components are suppressed. The
number of the sensors is increased from that of
the signal sources in order to cancel the noise
components. The necessary number of the sensors
can be theoretically determined.

In this paper, effects of the reduced number of the
sensors on the separation performance is analyzed.
Furthermore, in practical applications, nonlinear-



ity is not so dominant, therefore, the separation
performance is also analyzed based on the ratio of
nonlinearity in the observed signals.

2. NOLINEAR MIXTURES

In this paper, the nonlinearity is expressed by
polynomials. Thus, the observed signals include
the high-order terms of the signal sources and the
cross terms among the different signal sources.
Letting s; be the signal sources, and nonlinearity
be a 2nd-order function, the observed signal z;(n)
is expressed as

n
T = E ag iS; +
i=1

n n
> D akijsis;

i=1 j=1

(1)

Thus, x; contains the original s;, the high-order
terms s?, and the cross terms s;s;,i # j. Nonlin-
earity is not limited to post-nonlinearity, rather it
can be included in the processes of generating,
transmitting, and sensing signals. Equation (1)
can express a general case. Order of nonlinearity
is limited to 2nd or 3rd-order. However, in many
practical applications, linear processing is a main
part, and nonlinearity is parasitic phenomena,
which can be approximated by low-order nonlin-
ear functions.

If the signal sources are statistically independent,
then a;s; + b;s? and a;s; + bjs?,i # 7 are also
statistically independent, and can be separated by
minimizing the mutual information [1]. The cross
term s;s;,¢ # j has some correlation with both
s; and s;, then it can be suppressed through the

above learning process.

3. SEPARATION BLOCK
3.1 Network Structure

A cascade form BSS is shown in Fig.1. The post-
nonlinear (PNL) mixture model is used here [3],
[4], [5]. However, this approach is not limited to
the PNL mixtures, rather can cover a general case.
First, the signal sources s; are mixed through
linear combination resulting in u;. After that,
they are transmitted through nonlinear functions
F}, resulting in xy.

3.2 Number of Sensors

In this model, in order to cancel the other compo-
nents, the number of the sensors is increased from
that of the signal sources. The observed signal xj,
given by Eq.(1) includes n(n — 1)/2 + 2n terms.
that is s; and s;s;. In order to extract one group,
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Fig. 1. BSS cascading separation and linearization

blocks.

Separation Block

that is ay ;s; + ay ;;57, the remaining part, which
includes n(n—1)/2—2n — 2 terms, should be can-
celled. Therfore, n(n —1)/24 2n —1 equations are
needed. This means 24,1 < k < n(n—1)/2+2n—1
are required. Thus, the number of the sensors is
n(n—1)/242n — 1.

One example is shown below. Two signal sources
are received by four sensors.

21 =0b1151 + biasa + b138% + bigs152 + b1533(2)
Ty =bo151 + bagsa + b235% + bags1 52 + 52553(3)
23 =b3151 + b3asa + b338% + b3ys152 + b353§(4)
(5)

)

x4 =byy51 + byoso + b433% + bygs152 + b453§ 5

The coefficient expression is different from Eq.(1
for simplisity. x; can be treated as a constant.
From these linear equations, one group, including
s; and s? components, is separated by cancelling
the cross term s;s; and the other components
s; and s? This can be done by minimizing the
mutual information among the outputs z;. The
ideal results become

(6)
(7)
This process is equivalent to multiplying a vector
[1,75,73,24]7 by a 2 x 4 linear matrix W =
{wlk}.

_ 2
Z1 = 1181 + €287

_ 2
22 = C2182 1+ €2255

3.8 Learning Algorithm

In this block, the signal sources are separated
based on their statistical independency. Therefore,
the conventional learning algorithm, that is likeli-
hood estimation minimizing the mutual informa-
tion can be applied [1].

W(n +1) = W(n) + n[A(t) — ¢(z(n)z" (n)]W (n)(8)

7 is a learning rate, A(t) is a diagonal matrix, and
©() is a nonlinear function [2].



4. LINEARIZATION BLOCK
4.1 Linearization Based on Solving Fquations

At the outputs of the separation block, it is
assumed that the signal sources are completely
separated as shown in Egs.(6) and (7). Since z;
and z include only s; and ss, respectively, they
can be linearized through the following nonlinear
functions.

—c1 2 4
y1 =G1i(z) = o 2611 Tacns (9)
C12
—co1 £ 2 4
Yo = Ga(29) = C21 €3y + 4ca020 (10)
2c¢22

Finaly, the separated and linearized signal sources
are obtained.

y1 =dy51

Y2 =das

4.2 Learning Algorithm

Transformations in the linearization block are
given by Eqs.(9) and (10). However, in real appli-
cations, the coefficients c;; are not known. So, they
should be adjusted through an iterative method.
Equations (9) and (10) can be expressed by using
two parameters as follows:

; a?  zi(n)
() =—21 4 [% 13
wm ==+ /%20 )
: 1
a=2, B=— (14)
biz Ci2

a; and (; are adjusted through an iterative
method.

In this paper, 2nd-order nonlinearity is assumed.
Thus, after the linear source separation, the out-
puts include 1st-order and 2nd-order terms of the
signal sources. Furthermore, if we take speech and
music signals into account, their average is almost
zero. Therefore, the output average can be used
as a cost function.

1 4=
M
=0

[y

Ei(n) = yin — 1) (15)

The gradient descent algorithm is used for adjust-
ing the parameters.

ai(n) =a;(n —1) — n‘;fgg (16)
Bim) =n=1)=ngo )
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0E;(n) _ 1 = dyi(n—1)
dai(n) M — da;(n)
M—1 2
:% (_li aiin)(azi )
1=0
! -1
+mz(n —1))77) (18)
0E;(n) 1 X~ dyi(n—1)
aﬁz(n) - M =0 Bﬁl(n)
1 = z(n —1), a;(n)?
M & ( 232 (=5
! -3
+mz(n —1))"?) (19)

5. REDUCTION IN NUMBER OF SENSORS

As described in Sec.3.2, the number of the sensors
is n(n — 1)/2 + 2n — 1, where n is the number
of the signal sources. When many signal sources
exist, many sensors are requred. In practical ap-
plications, reduction in the number of the sensors
is important to make a system compact. For this
reason, effects of reduction in the number of the
sensors is analyzed. This effect is also dependent
on the ratio of the nonlinearity in the observed
signals.

6. SIMULATIONS AND DISCUSSIONS
6.1 Simulation Conditions
Three signal sources and 4~8 sensors are used.

The signal sources are male and female speech
signals. The mixing matrix is

1 05 —0.8}
0.3 —0.7 0.2
-02 1 0.1
09 02 -1
A= —-0.4 —0.6 0.5
1 02 04
03 —0.1 1
| —0.5 —0.3 —0.3J

The learning rates are n = 0.001 and 0.5 in the
separation block and the linearization block, re-
spectively. The nonlinear functions in the mixing
block are

Fy(uy) =u, — 0.8u?
Fy(us) = us + 0.7u3
Fs3(u3) =u3 — 0.5u3
Fy(uy) =ug + 0.6uy
Fs(us) = us — 0.8u?



FG(UG) = Ug — 07u§
F7(U7) =uy + 0.9u$
Fg(Ug) =ug — 06U§

6.2 SNR FEvaluation

6.2.1. Separation Block  Assuming s; is domi-
nant in z;, and letting o2, and o2, be the power
of s; in z;, and the power of the remaining terms,
respectively. SINR is defined by

L
Zi:l Osi (20)

Z?:l 0.37.7,

Based on SNR; defined by the above equation,
the separation block learning is not complete,
because the high-order components s? cannot be
suppressed.

SNR; = 10log,

6.2.2. Linearization Block The SNR evaluation
is the same as that defined by Eq.(20). However,
the same formula cannot be used, because s; is
not directly appeared. The s; component and the
other components are discriminated as follows:

z;(n) is linearized through

yi(n) = —% + %2 + Zigl) (21)
Let
2 .
2 50 o)+ b+ e(22)
Furthermore,

VJais?(n) + bisi(n) + ci(n) = dysi(n) + e, (€93)
a;s3(n) + bisi(n) + ci(n)
= d?s%(n) + 2d;s;(n)e;(n) + e;(n)? (24)

Comparing the coefficients, the following relations
are obtained.

& =a; (25)
ei(n) =ci(n) (27)
a; and ¢;(n) are calculated using «;, 8; and z;(n)

at each iteraton. SN R is calculated by

SNRy; = IOIOgSEZ; (28)

1 = o;
p(n) =7 Z (yi(n) + ?Z —ei(n))? (29)

6.3 Simulation Results

6.3.1. SNR Improvement SNR, for xz; and z;
and SN R; for y;, which are calculate by fixing the
separation block and the linearization block after
the learning converge, are shown in Fig.2. The
vertical axis indicates SNR; or SN R, in dB, the
horizontal axis is the sample number of the speech
signals. From these results, this BSS method can
improve SNR; 5 by approximately 15 dB.

(1)Linearization
(2)Source separation
25  (3)After mixing

° s s s s
0 5000 10000 15000 20000 25000

samples
Fig. 2. SNR, for z; and z; and SN R, for y;.

6.3.2. Relations between SNR and Number of
Sensors  The number of the sensors are changed
from 4 to 8. The simulation results are shown
in Fig.3. The case using 8 sensors is the best.
However, another case using 7 sensors is close to
the best. The cases using 4 and 5 sensors are not
good.

35 T
(1)Sensor 8 channel
(2)Sensor 7 channel
(3)Sensor 6 channel
(4)Sensor 5 channel

‘v\ (5)Sensor 4 channel

-10

. . samples .
Fig. 3. SNR, after linearization using 4~8 sen-

SOrs.

In the next simulation, the ratio of the nolinearity
is reduced to 50 percents of the previous example.
The simulation results are shown in Fig.4. In
this figure, difference among SNR obtained by
using 6~8 sensors becomes smaller than the previ-
ous. From these results, in practical applications,
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where the ratio of the nonlinearity is small, the
reduced number of the sensors can provide good
separation performance.

(1)Sensor 8 channel
0 (2)Sensor 7 channel
(3)Sensor 6 channel
5 (4)Sensor 5 channel
(5)Sensor 4 channel

o 10000 15000 20000
samples

Fig. 4. SNR, after linearization using 4~8 sen-

0 5000

sors. Ratio of nonlinearity is reduced.

7. CONCLUSIONS

In this paper, the BSS method cascading the
separation block and the linearizatiion block in
this order has been analyzed. SNR is improved
by 15 dB after the linearization compared with
the observed signals. Furthermore, the number of
the sensors can be reduced for the small ratio
of the nonlinearity in the observed signals, while
maintaining good separation performance.
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