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Abstract
Many problems solved by multilayer neural networks (MLNNs) are reduced into pattern mapping.

If the mapping includes several different rules, it is difficult to solve these problems by using a single
MLNN with linear connection weights and continuous activation functions.
In this paper, a structure trainable neural network has been proposed. The gate units are embedded,

which can be trained together with the connection weights. Pattern mapping problems, which include
several different mapping rules, can be realized using a single new network. Since, some parts of the
network can be commonly used for different mapping rules, the network size can be reduced compared
with the modular neural networks, which consists of several independent expert networks.

Keywords !]Multilayer neural networks, Modular neural networks, Pattern mapping, Gate units,
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1. Introduction

Multilayer neural networks (MLNNs) have been applied to a wide variety of fields. They include prediction,
diagnosis, analysis, pattern classification, function approximation and so on. An essential function used in
all applications is pattern mapping. The input data are usually observed data, and the output data are
determined based on each application. For example, the latter data include the next coming data in the
predictors, symptom in the diagnosis, code of the categories in the pattern classification, and so on. An
important point is a rule, which governs the pattern mapping. If different several rules are involved in the
same pattern mapping problem, it is difficult to solve this problem by using a single MLNN with linear
connections and continuous activation functions. The mapping rule can only be gradually changed with
respect to the input data in these neural networks.

Modular neural networks are useful approaches to this kind of problems from performance view point
[1],[2]. However, this method requires independent expert network for each rule. One expert network can
only be used for one mapping rule. The expert network cannot be shared among different rules. Therefore,
from network size view point, this approach is not an elegant approach.

In this paper, we propose a structure trainable neural network with embedded gate units. The gate unit
works as switching, whose state is controlled by the input data. A single neural network changes its structure
with respect to the input data. It works just as different networks. Some parts of the network can be shared
by the different rules, resulting in saving network size.

Computer simulation of discontinuous function approximation will be shown in Sec.4 to confirm usefulness
of the proposed method.

2. Network Architecture

2.1. Network Structure

Figure 1 shows the proposed neural network with embedded gate units.
The input data x = [x1, x2, .., xI ] are transmitted to the hidden layer, at the same time, to the gate units.

The input potential uj and the output yj of the hidden units are given by

uj =
I∑

i=0

wjixi, x0 = 1 (1)

yj = fh(uj), 1 ≤ j ≤ J (2)
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x0 is bias and fh() is an activation function in the hidden layer. Transmission of the output yj is controlled
by the gate units as follows:

gj = fgj(x) (3)
ŷj = gjyj (4)

The gate unit output gj takes 1 or 0 depending on the input x. Therefore, the hidden units are selected
based on the input data. The input potential vk and the output of the output units are given by

vk =
J∑

j=0

wkj ŷj , ŷ0 = 1 (5)

zk = fo(uk), 1 ≤ k ≤ K (6)

ŷ0 is a bias unit. fo() is an activation function in the output layer.

2.2. Gate Units

The gate function fgj() is trained together with the connection weights wji and wkj . For this purpose, the
following function is employed.

fgj(x) =
1

1 + ebj(x−cj)
(7)

An inclination and a switching point are determined by bj andcj , respectively. To realize switching function,
bj must be large. However, a large bj will cause some difficulty in a training phase. It will be controlled in
the learning process from a small value to a large value gradually. This process is similar to an annealing
process.

Since we do not know discontinuous points in mapping rule, that is switching points of the gate units, cj

must be automatically adjusted for each application.
Type of Gate Functions :
Three kinds of gate functions are mixed.
TypeA: Flat gate, that is, fgj(x) = 1.
TypeB+: Monotonically increasing function, that is bj > 0.
TypeB-: Monotonically decreasing function, that is, bj < 0.
The flat gate transmit the hidden output in all input range. Therefore, the related hidden units are used in
all mapping rules.

3. Learning Algorithm

3.1. Gradient Decent Algorithm

The learning algorithm is based on the gradient decent method. A cost function is given by

E =
1
K

K∑

k=1

(dk − zk)2 (8)

dk is the target.

3.2. Simaltenious Learning

The correction term is determined by the partial derivative. Letting p(n) be a parameter at the nth iteration,
it is updated by

p(n + 1) = p(n) − η
∂E

∂p(n)
(9)
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In this network, the gate function is learned. It is similar to the activation function training [6],[7]. Compared
with the above, the hidden unit outputs are replaced by the gate unit outputs in the new structure. From
Eqs.(2), (3) and (4), the gate output is expressed by

ŷj = fgj(x)fh(uj) =
1

1 + ebj(x−cj)

1
1 + e−uj

(10)

Here, the sigmoid function is used for the activation function fh(). The trainable activation functions
proposed in [6],[7], have the following form.

y = f(u) =
L∑

l=1

{ al

1 + e−blu−cl
+ dl} (11)

A learning method for adjusting both the connection weights and this activation function was also proposed.
The parameters al, bl, cl, dl are trained together with the connection weights wji and wkj . Compared with
Eq.(11), Eq.(10) has another function

1
1 + e−uj

, (12)

which can be regarded as a constant in adjusting bj and cj .
On the other hand, in calculating the pertial derivative of E with respect to wji, the other function

1
1 + ebj(x−cj)

(13)

can be regarded as a constant. Therefore, the update formula proposed for the trainable activation functions
can be basically applied [6],[7].

3.3. Control of Inclination of Sigmoid Functions

In the proposed method, the sigmoid functions are used in the hidden layer and the gate layer. This means
the hidden units can play a role of the gate units instead. However, the role of the hidden units is to
approximate the mapping rule in each interval. For this purpose, the inclination of both functions are
controlled.
Hidden units :
The inclination is determined by absolute value of the connection weights |wji|. If they have a large value,
the inclination, that is, ∂yj/∂x becomes sharp, which can work as the gate function. If the hidden units
play as a role of switching, the gate units cannot move toward the optimum switching points. In order to
avoid this problem, the connection weights wji are reset to small random numbers like the initial guess. This
means the learning of the connection weights is restarted using small random numbers at some interval. At
this reset, the gate units succeed the previous results.
Gate units :
On the contrary, the inclination of the gate function fgj() must be sharp, in order to realize discontinuous
function. However, the optimum switching points are not known before hand. Therefore, the gate functions
will be set initially on equal spaced points along the input data axis. The switching points are optimized by
adjusting cj in a learning process. In this phase, if the inclination is very high, that is bj has a very large
value, the partial derivative of fg() is very small in a wide range of the input data. This causes very slow
convergence, and the gate function cannot move toward the optimum switching point.

For this reason, in the proposed method, the inclination bj is controlled in an annealing way. It is
controlled from relatively large value to very large value gradually in a learning process.

4. Simulation and Discussions

Discontinuous Function Apploximation:
Function: The function to be approximated is shown in Fig.2. INPUT and OUTPUT mean x and
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zk, respectively. In this case, one dimensional input and one output are used. It is assumed that training
data are given at random, thus, the figure of the function is not known before hand. 500 training data are
randomly selected on the lines shown in Fig.2.

Network : The network used here consists of one input unit, 8 hidden units, 8 gate units and one
output unit. It has the connection weights from the input unit to the hidden layer wji, i = 1, and from the
gate layer to the output unit wjk, k = 1.
Initial Guess : The initial guess of the connection weights are uniformly distributed during -0.1!A0.1. At
the reset, the connection weights are set to random numbers distributed in the same way.

The inclination of the gate units is changed so that bj = 100, 150, 200, 300 at the beginning, 5000, 20000
and 40000 iterations in the learning process. The final value is bj = 300. The connection weights are reset
at the same iterations. The switching points are initially set at the equally spaced points. However, the just
switching points, that is x = 0.33, 0.66 are avoided. The date are listed in Table1. Type of the gate functions
are also shown in Table1. Besides them, two flat gate units are used.
Simulation Results : Figure 3 shows a learning curve. The mean squared error (MSE), that is E given
by Eq.8, suddenly increases at the iterations, where the connection weights are reset. Figure 4 shows the
switching point change in the learning process. The gate3 and the gate5 moved and settled down at the
optimum switching points, 0.33 and 0.66. The other gates trapped at irregular points. However, as shown
in Table1, the connection weights from these gate units to the output unit are small, except for the gate1.
This means they can be pruned in the same way as the pruning methods for the hidden units [3],[4],[5].

Figures 5 shows the approximated function. The discontinuous parts are well approximated.
Comparison with Ordinary MLNN : Figures 6 and 7 show the learning curve and the approximated

function by using the ordinary MLNN without the gate units. The network size is one input unit, 8 hidden
units and one output unit. The convergence is fast, hoever, it cannot approximate around the discontinuous
points, resulting in the large error. On the contrary, the proposed method can approximate the discontinuous
function more precisely.

Network Reduction: The two flat gate units cover all the input range 0 ≤ x ≤ 1, and the gate3
covers two sections. The hidden units and the connection weights related to these gates are commonly used
in several intervals, where the mapping rules are different. This common usage of the elements can reduce
the network size compared with the modular neural networks [1],[2], where the common usage is impossible.

5. Conclutions

In this paper, a structure trainable neural network has been proposed. The gate units are embedded, which
can be trained together with the connection weights. Pattern mapping problems, which include several
different mapping rules, can be realized using a single network. Since, some parts of the network can be
commonly used for different mapping rules, the network size can be reduced compared with the conventional
modular neural network, which consists of several independent expert networks.
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Figure 1: Structure variable neural network with
embedded gate units.
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Figure 2: Discontinuous function to be approxi-
mated.
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Figure 3: Learning curve in proposed method.
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Figure 4: Switching point movement of gate units

Table 1: Type of gate functions, switching points
(SP) and wkj.

Gate No. Type Initial SP Final SP wkj

1 B+ 0.1 0.07 2.30
2 B- 0.2 0.18 -0.30
3 B+ 0.4 0.33 1.31
4 B- 0.5 0.51 -0.05
5 B+ 0.7 0.66 1.26
6 B- 0.8 0.84 -0.13
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Figure 5: Function approximated by new network
with gate units.
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Figure 6: Learning curve in ordinary MLNN without
gate units.
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Figure 7: Function approximated by ordinary
MLNN without gate units.
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