
A Hybrid Learning Algorithm for Multilayer Perceptrons

to Improve Generalization under Sparse Training Data

Conditions

Masanobu TONOMURA Kenji NAKAYAMA

Graduate School of Natural Science and Technology, Kanazawa Univ.
2–40–20 Kodatsuno, Kanazawa, Ishikawa, 920–8667, Japan

e-mail: tonomura@leo.ec.t.kanazawa-u.ac.jp

Abstract

The back-propagation algorithm is mainly used for mul-
tilayer perceptrons. This algorithm is, however, diffi-
cult to achieve high generalization when the number of
training data is limited, that is sparse training data.
In this paper, a new learning algorithm is proposed. It
combines the BP algorithm and modifies hyperplanes
taking internal information into account. In other
words, the hyperplanes are controlled by the distance
between the hyperplanes and the critical training data,
which locate close to the boundary. This algorithm
works well for the sparse training data to achieve high
generalization. In order to evaluate generalization, it is
supposed that all data are normally distributed around
the training data. Several simulations of pattern clas-
sification demonstrate efficiency of the proposed.

1 Introduction

The back-propagation (BP) algorithm [1] is mainly
used for multilayer perceptrons (MLP). This algorithm
can approximate Bayes boundary using a sufficient
number of training data in the statistical sense [2],[3].
This is the theoretical foundation which MLP are used
as a classifier. This condition is, however, not always
satisfied in the actual applications. Therefore, how to
improve generalization ability using a limited number
of the training data is very important [4]-[7].

Regarding conventional methods, generalization of
the BP algorithm highly depends on the training data.
The regularization learning method [4] requires more
computation and results in slow convergence rate as
the input dimension becomes high. Generalization by
the weight elimination [5] is not sufficient for sparse
training data. Performance of the SVM [7] depends on
selection of the kernel function and other parameters.

In this paper, first, an internal information optimum
(IIO) algorithm for single-layer perceptron is proposed,
which is a basic algorithm for the optimization. The
distance between the training data and the hyperplanes
formed by connection weights from the input layer to
the first hidden layer is called ”internal infomation” in
this paper. The IIO algorithm moves the hyperplanes
taking the internal information into account and im-
proves generalization. Convergence of this algorithm is
theoretically proved. Furthermore, a hybrid learning
algorithm for MLP is proposed, which combines the
BP algorithm and the IIO algorithm. It does not re-
quire many training data and computational load, and
is useful for not only sparse data but also mixed sparse
and dense data distribution.

2 Assumption of Distribution

2.1 Optimum Boundary for Sparse Training
Data
Under the sparse training data condition, if the cate-
gories are formed by using only the training data, the
region of each category shrink compared with the opti-
mum region, which can cover the other data than the
training data. In such cases, the position of the hy-
perplane formed by the BP algorithm is not uniquely
decided, rather it depends on the relative size of the
connection weights, a learning-rate and a slope of sig-
moidal functions. Then, the input potential, that is a
linear combination of the inputs reaches a saturation
point, where generalization is not sufficient, and the
learning stops. Therefore, the BP algorithm cannot
approximate the Bayes boundary, which is generally a
quadratic hypersurface [8].

Since, it is difficult to conjecture the distribution of
each category precisely by using the sparse training
data, in this paper, it is supposed that all data are nor-
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mally distributed around the training data, occurrence
rate of data of each category are equiprobable and all
eigenvalues of the covariance matrix are the same.

Under the above assumptions, the optimum bound-
ary orthogonally crosses the line at the center point,
which connects the nearest-neighbor training data of
two classes.

2.2 Evaluation of Generalization
There are deterministic and statistical evaluation of
generalization. The former supposes that the training
data are sampled from the data set with high density.
The latter uses the samples which occur in accordance
with the training data distribution density, and evalu-
ates generalization on the average of many trials. First,
it is shown that the IIO algorithm improves generaliza-
tion in deterministic from Sec.3.1 to Sec.3.4 to make it
easy to understand. Next, it is shown statistically by
using the experiment in Sec.3.5.

3 Basic Algorithm

3.1 Basic Network

Figure 1: Single-layer perceptron

We consider the single-layer perceptron model with the
n-dimensional inputs and one output as shown in Fig.1.
These are defined as follows:

x = [x0, x1, · · · , xn]t, x0 = 1, xi ∈ J (1)
w = [w0, w1, · · · , wn]t (2)
y = f(wtx) (3)

f(x) = 1/(1 + e−x/u) (4)

where x0 is a bias (x0 = 1), w0. J ≡ [0, 1]. wt is the
transpose of the weight vector w, and f(·) is a nonlinear
activation function.

3.2 Estimate Function
The multi-dimensional vector space which consists of
a weight vector w and the training vectors x1 ∈
Class1,x2 ∈ Class2 is shown in Fig.2. If we assume

Figure 2: Vector space

that the test vectors are normally distributed around
the training vectors and all the eigenvalue σ2 of the
n-by-n covariance matrix are the same, it is necessary
that the radius (example:3σ) of the hypersphere does
not exceed the hyperplane so that the test vectors may
be classified properly. The radius rp is a projection on
the weight vector w of the training vector xp(p=1, 2)
and is given by

rp =
|wtxp |
‖w‖ = ‖xp‖|cos θp | (5)

where ‖ ·‖ denotes the Euclidean norm. When r1 =
r2, the noise permissible level of the training vector
x1, x2 becomes equal without leaning. The inverse of
Eq.(5) can be considered the force Fp which xp pushes
a hyperplane. The criterion, which measures a balance
of these forces, is given by

Eiio ≡ 1
2 |X |

∑
x∈X

(
β(x)

‖ w ‖
wtx

)2

(6)

where |X| is the number of the patterns which belong
to a finite subset X of Jn. β(x) is the weight function
which makes the statistic nature of the training vectors
reflect on the evaluation function. In this paper, β = 1.

3.3 IIO Algorithm
The IIO algorithm is based on the gradient descent al-
gorithm, which minimizes the mean squared error Eiio.
w(n) is updated as follows:

w(n+1) = w(n) + ∆w |w=w(n) (7)

∆w = µ tanh
(
−∂Eiio

∂w

/
T

)
(8)

where n is an iteration number. µ is a leaning-rate pa-
rameter, 0 < µ � 1. A slope of the tanh function is
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controlled by T . The purpose of using the tanh func-
tion is to assure convergence even when a hyperplane
is in the neighborhood of the training vectors.
〈The condition of the convergence〉
Convergence can be assured by deciding a learning rate
µ in the range that it does not exceed the shortest dis-
tance between the regions of the different classes. The
sufficient condition for the convergence is given by

| max[∆w] |= µ < min{d[xp
i , x

q
i ]} (9)

where d[xp
i , x

q
i ] is a distance between the elements

xp
i , xq

i , (i=1, · · · , n), p ∈ Xp, q ∈ Xq, p 6= q. Actually,
small value which satisfies Eq.(9) is used to restrain
vibration.

3.4 The Nature of IIO Algorithm
By minimizing rp, the hyperplane can cross the straight
line, connecting the training vectors in two classes, at
the center point. The inverse of rp also moves the hy-
perplane like this. Furthermore, they are orthogonal
to each other. This is the important nature realized by
using the inverse of rp.
In the case of two-pattern two-class classification, from
Eq.(8), the correction is

∆w =
(‖w‖2x1

(wtx1)3
− w

(wtx1)2
)

+
(‖w‖2x2

(wtx2)3
− w

(wtx2)2
)

(10)

where µ, |X |, the tanh function are omitted for sim-
plisity. Letting ∆w = 0 in Eq.(10), the optimum w is
given by

w =
‖w‖2

(
(wtx2)3x1 + (wtx1)3x2

)
(wtx1)3(wtx2) + (wtx2)3(wtx1)

(11)

Furthermore, supposing both radiuses are equal (r1 =
r2)

wtx1 = −wtx2 (12)

By substituting Eq.(12) into Eq.(11)

w =
‖w‖2

2(wtx2)
(x2 − x1) (13)

From this analysis, it is confirmed that the IIO algo-
rithm can results w being parallel to the straight line,
connecting x1 and x2, that is the adjusted hyperplane
and the straight line are orthogonal to each other.

3.5 Statistical Generalization of IIO Algorithm
In this section, statistical generalization of the BP al-
gorithm and the IIO learning algorithm, applied after

Figure 3: Compare of statistical generalization ability of
the BP learning and the IIO learning.

the BP learning, is compared under the sparse train-
ing data condition. Two-dimensional inputs, two pat-
terns and two classes are taken into account. The cen-
ter of each category are x1

c(∈Class1) = (0.3,0.7),x2
c(∈

Class2) = (0.7,0.3). Standard deviation for each class
are equal (σ =0.1). 1000 test vectors are used in each
class. The average recognition rate and the dispersion
(variance) of 100 trials are evaluated. Simulation re-
sults are shown in Fig.3. The horizontal axis indicates
the number of the training vectors which occurs in ac-
cordance with the distribution density. As the number
of the training data is increased, the recognition rate
improves and the dispersion becomes small. They are
saturated at 7 training data. The recognition rate of
the IIO learning algorithm is beyond that of the BP al-
gorithm in all cases. Thus, the IIO learning algorithm
can improve generalization based on the statistical eval-
uation.

The “center” on the horizontal axis means the case
that the training vectors are fixed at the center of
each class. In this case, the recognition rate is higher
than the other cases. This means that the recognition
rate can be improved by collecting the training vectors
around the central of the distribution.

4 A Hybrid Learning Algorithm for MLP

If the input vectors are mapped onto around the apex
of the hypercube through the first hidden layer with
a sigmoidal nonlinear function, the generalization abil-
ity is not affected by the hyperplanes formed with the
connection weights in the upper layers. Because the
outputs of the first hidden layer are not affected by
disturbance in the input data. The same situation is
observed in the upper layers. On the other hand, ef-
fects of the hyperplanes formed with the connection
weights from the input layer to the first hidden layer
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on the generalization ability is high. Therefore, these
hyperplanes should be moved to the suitable position to
improve generalization under the sparse training data
condition. So, we propose a hybrid learning algorithm
for MLP. The correction of the IIO algorithm is com-
bined to that of the BP algorithm in learning the con-
nection weights from the input layer to the first hidden
layer.

For N + 1 multilayer perceptron with n0-input, nN -
output, the connection weight wpij is updated as fol-
lows:

wpij(n+1) = wpij(n) + ∆wpij|w=w(n) (14)

∆wpij =

{
∆wbp

pij + ∆wiio
pij (p=1)

∆wbp
pij (2≤p<N)

(15)

∆wbp
pij = η

1
| X |

∑
x∈X

δpj(x)gp−1,i(x) (16)

∆wiio
1ij = µ tanh

( 1
|X|

∑
x∈X

β2(x)
(wt

1jx)2
(‖w1j‖2

wt
1jx

xi−w1ij

)/
T
)

(17)

where wpij(p = 1, · · · , N, i = 0, · · · , np−1, j = 1, · · · , np)
are the connection weights of jth unit in p+1th layer
from ith unit in pth layer. The correction ∆wpij shown
in Eq.(15) is a combination of ∆wbp

pij and ∆wiio
pij. The

correction ∆wbp
pij shown in Eq.(16) is defined by a delta

rule. η is a learning rate, 0 < η < 1. Equation(17) is
indicated with the element of Eq.(8). w1j is a weight
vector of jth unit in the first hidden layer. µ must sat-
isfies both Eq.(9) and (0 < µ/η � 1) which does not
affect pattern classification by the BP algorithm. The
correction ∆w1ij propagates as shown in Fig.4.

Figure 5 shows the relative relation of ∆wiio
1ij(solid

line) and ∆wbp
1ij(dotted line). When the leaning does

not converge, ∆wbp
1ij is dominant because µ is very small

in comparison with η(Case1). As the learning con-
verges to a certain extent, ∆wiio

1ij becomes dominant.
When the sign of ∆wiio

1ij and ∆wbp
1ij is the same, ∆wiio

1ij

accelerates the learning, and slows down it with the
oposite sign. When the sign of ∆wbp

1ij and ∆wiio
1ij are dif-

ferent as shown in Case2, 3, it becomes ∆w1ij =0 in the
position of the thin dotted line and the learning stops.
Although the learning should converge at ∆wiio

1ij = 0
ideally, there is a gap. In order to restrain this gap
to be the minimum, T in Eq.(17) is made as small as
possible to make the width of ∆wiio

1ij short. Actually,
the hyperplane is adjusted in the optimum position,
because ∆wbp

1ij decreases monotonously with a certain
sign after the classification ability is constructed, and
the generalization is further improved.

Under the sparse training data condition, if cat-

Figure 4: The propagation of the modification of the con-
nection weight w1ij

Figure 5: Relations between the correction ∆wbp and
∆wiio

egories are linearly separable, then the generaliza-
tion can be improved by using the two-step learning
method, in which the IIO learning algorithm is applied
after the BP learning converges. However, in actual
applications, we must presume mixed sparse and dense
data distribution, in which the training data are over-
lapped between the categories. In this case, it is may be
expected that the quadratic hypersurface, adjusted by
using the two-step learning algorithm which emploies
the distance between the training data and the hyper-
planes, is not good for the generalization. However,
the hybrid learning algorithm has the following feature,
it moves the hyperplanes to improve generalization in
the sparse distribution and does not influence for the
dense distribution, in which ∆wbp

1ij is dominant. Even
if ∆wbp

1ij is obstructed by ∆wiio
1ij, ∆wbp

1ij increases due
to the increase of the BP error, and |∆wbp

1ij+∆wiio
1ij |>0.
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Table 1: Compare of recognition rate of the BP learning
and a hybrid learning in each example.

BP learn Hybrid learn
Example 1 0.953 0.993
Example 2 0.950 0.950
Example 3 0.898 0.901

5 Simulation Results

5.1 Two-Class Problem
In order to observe the hyperplanes and recognition re-
gions visually, two-dimensional two-class classification
is employed for computer simulations. Multilayer per-
ceptrons with two hidden layers are used. The number
of the input units, the 1st hidden units, the 2nd hid-
den units, and the output units are 2, 10, 5 and 2,
respectively. An offset unit is included in each layer.
The recognition rate of the BP algorithm and the hy-
brid learning algorithm are compared by using the same
initial connection weights. The targets 0.99, 0.01 are
used to destinguish two classes. The classification was
done using the threshold 0.5. Regions where the out-
put ≥ 0.5 and < 0.5, are drown with black and white
colors, respectively. Gray straight lines indicate the hy-
perplanes from the input layer to the first hidden layer.
Recognition rates are shown in Table 1.

5.1.1 Example 1: Sparse Distribution. As
shown in Fig.6, five training data are used, where 1
datum (O) belongs to Class 1 and 4 data (X) belong
to Class 2. The dotted circles are the assistants of the
same distance from each pattern. Recognition rates are
calculated by using 1000 test data, which occur around
the training data. Figure 6(a) shows the boundary ob-
tained through the BP algorithm. From this result,
the generalization is not good. Figure 6(b) shows the
result by the proposed hybrid learning algorithm. The
hyperplanes shown in Fig.6(a) are further modified to
improve the generalization.

5.1.2 Example 2: Overlap Distribution. 200
training data in each category are sampled in accor-
dance with the specified distribution. The data distri-
bution is given by the center coordinate, x1

c(∈Class1)=
(0.4,0.6), the standard deviation σ1 = 0.05, and x2

c(∈
Class2) = (0.6,0.4), σ2 =0.15. The recognition rate is
calculated with 1000 test data, sampled in the same
way as the training data. Simulation results are shown
in Fig.7, in which dots indicate the training data. The
boundary approximates the Bayes discriminant func-
tion. The hyperplane positions of the hybrid learning

Figure 6: Classification regions and hyperplane in the
case that a space of the categories is sparse.

algorithm are different from that of the BP algorithm.
However, their regions are almost the same. The recog-
nition rate is also equal from Table 1. From this result,
it can confirm that the proposed does not influence the
quadratic hypersurface made by the BP algorithm.

Figure 7: Classification regions and hyperplane in the
case that a space of the categories is dense.

5.1.3 Example 3 : Mixed Sparse and Dense Dis-
tribution. 100 training data in each category are
sampled from the distribution, specified with the cen-
ter coordinate, x1

c(∈Class1) = (0.4,0.6), the standard
deviation σ1 = 0.1, x2

c(∈Class2) = (0.9,0.1), σ2 = 0.02,
and x3

c(∈Class2) = (0.3,0.7), σ3 = 0.05. The recogni-
tion rate is calculated with 1000 test data. Simulation
results are shown in Fig.8. The proposed algorithm
does not influence the dense distribution, and moves
the hyperplanes to improve the generalization in the
sparse distribution.

5.2 Multi-Class Problem
A multi-class problem with 6-dimensional input and 4-
classes is employed for computer simulations. A mul-
tilayer perceptron with two hidden layers is used. The
number of the input units, the 1st hidden units, the
2nd hidden units and the output units are 7, 20, 7 and
5, respectively. The bias unit is included in each layer.
Four training data generated, which have distance of
1 among them, and assigned to each class. The de-
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Figure 8: Classification regions and hyperplane in the
mixed case that a space of the categories are
dense and sparse.

sired outputs of the assigned class is 0.99, and other
classes are 0.01. Recognition rate is calculated by us-
ing 1000 test data, which distribute around the training
data with the same standard deviation, σ = 0.2. The
hybrid learning algorithm is compared with the BP al-
gorithm by using the same initial connection weights.
The learning is stopped at 50,000 times, resulting in
well reduced error. The learning is tried 10 times by
changing the initial connection weights.

Simulation results are shown in Fig.9. In any cases,
recognition rates of the proposed are better than those
of the BP algorithm. Improvement of the recognition
rate is large in the 3rd trial, while small in the 5th trial.
This difference is caused by the relative size of connec-
tion weights, a learning-rate parameter and a slope of
sigmoidal function as stated in 2.1. The recognition
rates in the 3rd and the 4th trials are low in compari-
son with the other trials, where the proposed learning
algorithm is used. This is caused by the difference in
the combination of the hyperplanes constructed by the
BP algorithm. It shows that the proposed hybrid al-
gorithm improves the generalization ability within this
combination.

Figure 9: Compare of recognition rate of the BP learning
and a hybrid learning.

6 Conclusions

We have proposed the learning algorithm for the sparse
training data to achieve high generalization. The gen-
eralization can be drastically improved compared with
the BP algorithm with sparse training data and with-
out increasing computational load.

In this paper, we have used the ratio µ/η = 10−3 ∼
10−4, the learning-rate µ of the IIO algorithm and η
of the BP algorithm in the computer simulations. We
must clear the effective range of the value µ/η theoret-
ically as a future subject.
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