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Abstract

In blind source separation, convergence and separation
performances are highly dependent on a relation between
probability density functions (pdf) of signal sources and
nonlinear functions used in updating coefficients of a
separation block. This relation was analyzed based on
kurtosis κ4. It was suggested that tanh y and y3, where
y is the output, are useful nonlinear functions for super-
Gaussian (κ4 > 0) and sub-Gaussian (κ4 < 0), re-
spectively. In this paper, an adaptive nonlinear func-
tion is proposed. It has a form of f(y) = a tanh y +
(1 − a)y3/4, where a is controlled by the kurtosis of
the output signal yk(n). It is assumed that the pdf
p(y) of the output signal satisfies the stability condition
f(y) = −(dp(y)/dy)/p(y). Based on this assumption,
the parameter a and the kurtosis is related. This relation
approximated by a function a = q(κ4). In a learning pro-
cess, κ4(n) of the output signal is calculated at each sam-
ple n, and a(n) is determined by a(n) = q(κ4(n)). Then,
the nonlinear function f(y) is adjusted. Blind separation
of music signals of 2–5 channels were simulated. The
proposed method is superior to a method, which switches
tanh y and y3 based on polarity of κ4(n).

1 Introduction

Recently, many kinds of information are transmitted and
processed. At the same time, high quality is required.
For this reason, signal processing including noise can-
celation, echo cancelation, equalization of transmission
lines, restoration of signals have been becoming very
important technology. In some cases, we do not have
enough information about signals and interference. Fur-
thermore, their mixing and transmission processes are
not well known in advance. Under these situations, blind
source separation methods using statistical property of
the signal sources have become important [1]-[5].

Jutten et all proposed a blind source separation al-
gorithm based on statistical independence and sym-

metrical distribution of the signal sources [6]-[8]. Two
stabilization methods have been proposed for Jutten’s
method [10],[17].

Convergence and separation performance are highly
dependent on relation between a probability density
function (pdf) of signal sources and nonlinear functions
used in updating parameters in a separation block. Op-
timum nonlinearity has been discussed based on kur-
tosis. If the separation of signals of a certain class of
distributions is the goal, the literature suggests to apply
nonlinearities of the form f(y) = ay3 for sub-Gaussian
signals and f(y) = a tanh(y) for super-Gaussian signals,
where y is the output and a is scalar used to adjust the
output power. Another function is fixed to g(y) = y
[14],[15],[16].

In this paper, we propose an adaptive nonlinear func-
tion controlled by kurtosis. The pdf of the outputs
are assumed to satisfy f(y) = −(dp(y)/dy)/p(y) for
the given nonlinear function f(y). Kurtosis κ4 is cal-
culated using p(y). Furthermore, f(y) is controlled by
κ4. Multi-channel blind separation using music signals
were simulated, and usefulness of the proposed method
will be evaluated.

2 Network and Learning Algorithm

2.1 Network Structure
In this paper, the fully recurrent network shown in Fig.1
is taken into account. The number of the signal sources,
the sensors and the outputs are all the same. The sig-
nal sources si(n), i = 1, 2, ..., N are linearly combined
using unknown weights aji, and are sensed at N points,
resulting in xj(n). A general form is

xj(n) =
N∑

i=1

ajisi(n) (1)
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Figure 1: Block diagram for 3 signal sources, 3 sensors and
3 separations (3-3-3 model).

The output of the separation block yj(n) is given by

yj(n) = xj(n)−
N∑

k=1�=j

cjkyk(n) (2)

This relation is expressed using vectors and matrices in
the case of N = 3 as follows:

x(n) = As(n) (3)
y(n) = x(n)− Cy(n) (4)

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 (5)

C =




0 c12 c13

c21 0 c23

c31 c32 0


 (6)

A is an unknown mixing matrix. From these expres-
sions, a relation between the signal sources and the sep-
aration outputs becomes

y(n) = (I +C)−1x(n) = (I +C)−1As(n) (7)

The following matrix can be regarded as a separation
matrix.

W = (I +C)−1 (8)

In order to evaluate separation performance, the follow-
ing matrix is defined.

P = WA (9)

If P has a nonzero element of each raw and column, and
the number of nonzero elements is N , then the signal

sources s1, s2 and s3 are completely separated at the
outputs y1, y2 and y3. One example is shown here.

P =




0 p12 0
p21 0 0
0 0 p33


 (10)

2.2 Learning Algorithm
In this paper, a learning algorithm, which uses all out-
put signals to update cij , is employed. The update pro-
cesses for feedforward and feedback types are given by
[11],[12],[13],[14],
Feedforward Network

W (n+ 1) = W (n) + η(n)[Λ(n)
− f(y(n))y(n)T ]W (n) (11)

Fully Recurrent Network

C(n+ 1) = C(n) + η(n)[C(n) + I][Λ(n)
− f(y(n))yT (n)] (12)

Λ(n) is any positive-definite scaling diagonal matrix. In
Eq.(12), for instance, cik(n) is updated as,

cik(n+ 1) = cik(n) + η
N∑

j=1

cij(n)bjk(n) (13)

cii(n) = 0
bjk(n) = −fj(yj(n))yk(n) (14)
bjj(n) = 1

Thus, cik(n) is updated using overall output informa-
tion, that is yk(n) and yj(n), j = 1, 2, · · · , N, �= k.
bjk(n) = f(yj(n))yk(n) is weighted with cij(n). This
weighting is the same for the elements in the ith row of
C(n+ 1).

2.3 Optimum Nonlinear Functions
Optimum nonlinear functions are assigned based on kur-
tosis κ4 as follows: [16]

Kurtosis : κ4 =
E[(y − ȳ)4]
E2[(y − ȳ)2]

− 3 (15)

Sub-Gaussian : κ4 < 0 f(y) = ay3 (16)

a =
1

κ4 + 3
(17)

Super-Gaussian : κ4 > 0 f(y) = a tanh y (18)

a =
1

E[y tanh y]
(19)

a is a scalar used to adjust the output power.
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3 Adaptive Nonlinear Functions

3.1 Stability Condition
A relation between the pdf of the output signals and
the nonlinear functions, which satisfies the local stability
condition, is expressed as [16],

f(y) = −dp(y)/dy

p(y)
(20)

p(y) is the pdf of the output signals.

3.2 Relation between Nonlinear Function and
pdf of Output Signals
An adaptive nonlinear function proposed in this paper
is given by

f(y) = a tanh y + (1− a)
y3

4
(21)

The useful nonlinear functions tanh y and y3 were de-
rived for super-Gaussian and sub-Gaussian, respectively,
based on the stability condition [16]. These functions are
taken into our method. By synthesizing the nonlinear
function f(y) as a linear combination of these functions,
it can cover a wide range of kurtosis, that is the pdf of
the signal sources. The other nonlinear function is fixed
to

g(y) = y fixed (22)

Assumption
The pdf of the output signal is assumed to satisfy the
following local stability condition [13] for the nonlinear
function f(y) given by Eq.(21).

f(y) = −dp(y)/dy

p(y)
(23)

The above equation is solved by substituting f(y) given
by Eq.(21).

pdf of Output Signal
A solution of Eqs.(21) and (23) is obtained as follows:

p(y) = e
−
h
a(log cosh y+0.25)+(1−a)

�
y4
16 +0.45

�i
(24)

In the above equation, 0.25 and 0.45 are used to nor-
malize p(y).

Kurtosis
Kurtosis κ4 defined by Eq.(15) is calculated using p(y)

obtained in the above.

κ4 =
E[(y − ȳ)4]
E2[(y − ȳ)2]

− 3

=
∫

y4p(y)dy(∫
y2p(y)dy

)2 − 3 (25)

Relation between Kurtosis and a
First, κ4 is numerically calculated for given a by Eq.(25).
a is changed from 0 to 1. This numerical relation is
approximated by

a =
1

1− e−4κ4−1.2
(26)

−4 and −1.2 in the above are used to approximate the
numerical relation. Furthermore, the above equation is
expressed at each sample n as follows:

a(n) = q(κ4(n)) (27)

3.3 Nonlinear Function Control
Kurtosis of Output Signals
In a learning process, Eq.(25) is calculated by the fol-
lowing iterative integration.

ȳ(n) = (1− α)ȳ(n − 1) + αy(n) (28)
κ(n) = (1− α)κ(n − 1) + α(y(n)− ȳ(n))4 (29)

σ2(n) = (1− α)σ2(n − 1) + α(y(n)− ȳ(n))2(30)

κ4(n) =
κ(n)
σ4(n)

− 3 (31)

0 < α � 1 (32)

Linear Weight a(n)
a(n) is calculated using κ4(n) obtained above by

a(n) = q(κ4(n))

Nonlinear Function Control
Finally, the nonlinear function is controlled as

f(y(n)) = a(n) tanh y + (1− a(n))
y3(n)
4

(33)

g(y(n)) = y(n) fixed (34)

3.4 Stability Analysis
In this method, the local stability condition is directly
used to relate the pdf of the output signal and the non-
linear function. Although the nonlinear functions are
properly selected, the pdf obtained by Eq.(23) is not ex-
actly the same as the actual distribution of the output
signal. This mismatch will cause some instability.
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4 Numerical Analysis

Adaptive Nonlinear Function
Figure 2 shows the nonlinear function given by Eq.(21),
where a is changed from 0 to 1.
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Figure 2: Adaptive nonlinear function given by Eq.(21).

pdf of Output Signal
Figure 3 shows the pdf of the output signal calculated
by Eq.(24). Small a provides sub-Gaussian and large a
gives super-Gaussian.
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Figure 3: pdf of output signal calculated by Eq.(24). a is
changed from 0 to 1.

Relation between Kurtosis and a
Figure 4 shows relations between the kurtosis and a.
”Numerical relation” is calculated by Eq.(25) using nu-
merical data of a. ”Approximate” indicates the function
given by Eq.(26), which approximates the numerical re-
lation. After approximating the function a = q(κ4), a(n)
can be obtained using κ4(n), which is calculated using
the output signal distribution as shown in Eqs.(28)–(31),

at each sample n.
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Figure 4: Relation between kurtosis and a.

Relation between pdf and Actual Distribution
Figure 5 shows the kurtosis κ4 calculated following
Eqs.(28)–(31) using the output signal y(n) in the ac-
tual learning process. Signal sources are music signals.
α is set to 0.0005, that is, approximately 2,500 samples
are integrated to calculate κ4.
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Figure 5: Kurtosis calculated by using output signal in
learning process.

Figure 6 shows the pdf calculated by Eq.(24) and actual
distribution of the output signal. Average values of κ4

in a 2,500 sample interval shown in Fig.5 are used in
Eq.(26). Furthermore, a is used in Eq.(24) to calculate
the pdf of the output signal.

Roughly speaking, they are similar to each other.
However, still they are not exactly the same. This rela-
tion is highly dependent on the nonlinear function given
by Eq.(21). If we select another type of functions, then
the relation will be changed. This point should be more
investigated.
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Figure 6: Relation between pdf and actual distribution of
output signal for different kurtosis. Kurtosis is
averaged over 2,500 samples.

5 Simulation of Blind Separation

5.1 Simulation Conditions
Evaluation of Separation
Separation performance is evaluated by the following
SNR.

SNR = 10 log

∑
i,j∈Ω1

p2
ij∑

i,j∈Ω2
p2

ij

(35)

pij are elements of P in Eq.(9). Ω1 includes the ele-
ments of the separated signal sources, and Ω2 includes
the elements of the cross terms.

Mixing Matrix

A3ch =



1.0 0.6 0.5
0.3 1.0 0.7
0.4 0.5 1.0


 (36)

A5ch =




1.0 0.5 0.5 0.5 0.5
0.5 1.0 0.5 0.5 0.5
0.5 0.5 1.0 0.5 0.5
0.5 0.5 0.5 1.0 0.5
0.5 0.5 0.5 0.5 1.0




(37)

Signal Sources
Music signals are mainly used, because their pdf dy-

namically change, and their kurtosis κ4(n) take positive
and negative values. Therefore, adjusting the nonlinear
functions becomes very important.

5.2 Separation Performances
Figures 7, 8 show learning curves for 3ch and 5ch mu-
sic signal source separation. Figure 9 shows the case
of 3ch including two voices and one white noise. The
vertical axis is SNR defined by Eq.(35). The switching
method selects ether tanh y or y3 for the nonlinear func-
tion based on κ4(n) > 0 or κ4(n) < 0, respectively. This
method is regarded as a conventional approach [16].

In all cases, the proposed is superior to the con-
ventional. Usefulness of the proposed is evident when
the number of channels is increased. Furthermore, this
method is still useful for voice signals, whose kurtosis is
not so widely distributed.
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Figure 7: Learning curves for 3-channel music signal source
separation.

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Switching Method

Iterations

S
N

R
[d

B
]

Proposed

Figure 8: Learning curves for 5-channel music signal source
separation.

0-7803-7278-6/02/$10.00 ©2002 IEEE



0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Switching Method

Proposed

Iterations

S
N

R
[d

B
]

Figure 9: Learning curves for 3-channel signal source sepa-
ration, including two voices and one white noise.

6 Conclutions

An adaptive nonlinear function has been proposed. It
is formed as a linear combination of tanh y and y3. The
linear weight is controlled by the kurtosis. The pdf of
the output signal is related to the nonlinear function
based on the stability condition. Simulation of blind sep-
aration of 3ch and 5ch music signals have been demon-
strated. The proposed is superior to another method,
which switches the nonlinear function based on polarity
of the kurtosis.
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