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Abstract

A learning algorithm is proposed for fully recurrent con-
volutive blind source separation. Let si(n) and xj(n) be
the signal sources and the observations. Hji(z) expresses
a transfer function from si(n) to xj(n). It is assumed
that transmission delay time of Hji(z), j �= i is longer
than that of Hii(z). In many practical applications, this
assumption is acceptable. Based on this assumption,
si(n) in the output yj(n), j �= i of an unmixing block is
cancelled through the feedback Cji(z) from the ith out-
put to the jth observation. However, si(n) in the output
yi(n) cannot be cancelled, because a noncausal Cij(z) is
required. A cost function E[q(yj(n))] can be used, where
q() is an even function with a single minimum point.
Coefficients of Cji(z), that is cji(l) are updated follow-
ing a gradient descent method. The correction term is
expressed µq̇(yj(n))yi(n − l). q̇() is a partial derivative
of q(). Two channel blind source separation has been
simulated using speech signals. 100th- and 70th-order
FIR filters are used for C12(z) and C21(z), respectively.
A power ratio of the main signals and the cross compo-
nents is about 15dB.

1 Introduction

Signal processing including noise cancelation, echo can-
celation, equalization of transmission lines, estimation
and restoration of signals have been becoming very im-
portant technology. In some cases, we do not have
enough information about signals and interference. Fur-
thermore, their mixing process and transmission pro-
cesses are not well known in advance. Under these situ-
ations, blind source separation technology using statisti-
cal property of the signal sources have become important
[1]–[9].

Jutten et all proposed a blind separation algorithm
for a fully recurrent network based on statistical in-
dependence and symmetrical distribution of the signal
sources [4]-[6]. Two stabilization methods have been

proposed [10]. Unstable behavior caused by corruption
of symmetrical distribution and imbalance of the sig-
nal source levels can be overcome. Furthermore, a pair
learning algorithm has been proposed based on Jutten’s
algorithm [11].

In many applications, mixing processes usually
have some characteristics, that is convolutive mixtures.
Therefore, unmixing processes should be realized by us-
ing FIR or IIR filters. Several methods in a time domain
and frequency domain have been proposed. However,
when high-order filters are required for the feedbacks
Cji(z), a learning process becomes unstable and separa-
tion is not enough [12]–[16].

In this paper, a learning algorithm is proposed for
fully recurrent blind source separation. Some practical
assumption is imposed on transmission delay time of the
mixing process. Updating the coefficients requires only
the corresponding output yj(n) and their input yk(n−l).
It is similar to LMS algorithm for adaptive filters. Simu-
lation of two channel blind speech signal separation will
be shown in order to confirm usefulness of the proposed
method.

2 Network Structure and Equations

2.1 Network Structure
Figure 1 shows a fully recurrent separation model pro-
posed by Jutten et all [4],[12]. The mixing stage has
convolutive structure. In this paper, FIR filters are used
for the feedback circuits as shown in Fig.2. The number
of the signal sources, the sensors and the outputs are all
the same.

2.2 Network Equations in Time Domain
The signal sources si(n), i = 1, 2, · · · , N are combined
through the unknown convolutive mixture block, which
has the impulse response hji(m), and are sensed at N
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Figure 1: Block diagram of recurrent blind separation.
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Figure 2: FIR filter used for C21(z) and C12(z) in feedback.

points, resulting in xj(n).

xj(n) =
N∑

i=1

Mji−1∑
m=0

hji(m)si(n−m) (1)

The output of the separation block yj(n) is given by

yj(n) = xj(n)−
N∑

k=1�=j

Ljk−1∑
l=0

cjk(l)yk(n− l) (2)

This relation is expressed using vectors and matrices as
follows:

x(n) = HT s(n) (3)
y(n) = x(n)− CT ỹ(n) (4)
s(n) = [sT

1 (n), s
T
2 (n), · · · , sT

N (n)]T (5)
si(n) = [si(n), si(n− 1), · · · , si(n−Mi + 1)]T (6)
x(n) = [x1(n), x2(n), · · · , xN (n)]T (7)
y(n) = [y1(n), y2(n), · · · , yN(n)]T (8)
ỹ(n) = [yT

1 (n),y
T
2 (n), · · · ,yT

N (n)]T (9)

H =




h11 h21 . . . hN1

h12 h22 . . . hN2

...
...

. . .
...

h1N h2N . . . hNN


 (10)

hji = [hji(0), hji(1), · · · , hji(Mji − 1)]T (11)

C =




0 c21 . . . cN1

c12 0 . . . cN2

...
...

. . .
...

c1N c2N . . . 0


 (12)

cjk = [cjk(0), cjk(1), · · · , cjk(Ljk − 1)]T (13)
(14)

2.3 Network Equations in z–Domain
Letting Si(z), Xj(z) and Yk(z) be z–transform of si(n),
xj(n) and yk(n), respectively, they are related as follows:

X(z) = H(z)S(z) (15)
Y (z) = X(z)− C(z)Y (z) (16)
S(z) = [S1(z), S2(z), · · · , SN (z)]T (17)
X(z) = [X1(z),X2(z), · · · , XN(z)]T (18)
Y (z) = [Y1(z), Y2(z), · · · , YN (z)]T (19)

H(z) =




H11(z) H12(z) . . . H1N (z)
H21(z) H22(z) . . . H2N (z)

...
...

. . .
...

HN1(z) HN2(z) . . . HNN (z)


(20)

C(z) =




0 C12(z) . . . C1N (z)
C21(z) 0 . . . C2N (z)

...
...

. . .
...

CN1(z) CN2(z) . . . 0


(21)

From these expressions, a relation between the signal
sources and the separation outputs becomes

Y (z) = (I +C(z))−1X(z)
= (I +C(z))−1H(z)S(z) (22)

The following matrix can be regarded as a separation
matrix.

W (z) = (I +C(z))−1 (23)

In order to evaluate separation performance, the follow-
ing matrix is defined.

P (z) = W (z)H(z) (24)
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If P (z) takes the next forms, then the signal sources
si(n) are completely separated at the outputs yk(n).
Two channel case is shown here.

P (z) =
[

P11(z) 0
0 P22(z)

]
or

[
0 P12(z)

P21(z) 0

]

(25)

Letting pki(n) be an impulse response of Pki(z), if

pki(n) = 0, n �= n0 (26)

then, the separated signal becomes

yk(n) = pki(n0)si(n− n0) (27)

This output is obtained by amplifyng and shifting si(n).
This means no distortion on the separated signals.

3 Learning Algorithm

3.1 Assumption on Transmission Delay
For simplisity, 2-channel case is taken into account. It
is assumed that delay time of H11(z) and H22(z) are
shorter than that of H21(z) and H12(z). This means
that in Fig.2, the sensor of X1 is located close to s1(n),
and the sensor of X2 close to s2(n).

The separation conditions are given by

(1) C21(z) =
H21(z)
H11(z)

C12(z) =
H12(z)
H22(z)

(28)

y1(n) = hT
11s1(n) y2(n) = hT

22s2(n) (29)

(2) C21(z) =
H22(z)
H12(z)

C12(z) =
H11(z)
H21(z)

(30)

y1(n) = hT
12s2(n) y2(n) = hT

21s1(n) (31)

From the assumption on the transmission delay time
in Hji(z), the solutions in (1) become causal systems,
which can be physically realized. On the other hand, the
solutions in (2) are noncausal, which cannot be realized.

After separation, the output yk(n) is not exactly the
same as the signal sources si(n). Effect of H11(z) and
H22(z) still remain.

3.2 Cost Function
From Eq.(22), the outputs can be expressed for 2-
channel blind separation as follows:

[
Y1(z)
Y2(z)

]
=

1
1− C12(z)C21(z)

[
1 −C12(z)

−C21(z) 1

]

×
[

H11(z) H12(z)
H21(z) H22(z)

] [
S1(z)
S2(z)

]
(32)

=
1

1− C12(z)C21(z)

×
[

H11(z)− C12(z)H21(z) H12(z)− C12(z)H22(z)
H21(z)− C21(z)H11(z) H22(z)− C21(z)H12(z)

]

×
[

S1(z)
S2(z)

]
(33)

As described in Sec.3.1, transmission delay time of
Hji(z), j �= i is longer than that of Hii(z). Also, C12(z)
and C21(z) are causal circuits, which have positive trans-
mission delay. Therefore, In Eq.(33), the diagonal ele-
ments cannot be zero. On the other hand, the nondi-
agonal elements can be zero by adjusting the feedback
coefficients C12(z) and C21(z).

Therefore, a cost function can be defined as follows:

Jj(n) = E[q(yj(n))] (34)

q() is an even function with a single minimum point.
By minimizing the above cost function, the nondiagonal
elements can be minimized, while the diagonal elements
can hold some level. Instead of E[q(yj(n))], the instan-
taneous value q(yj(n)) is used like the LMS algorithm
for adaptive filters [7].

Ĵj(n) = q(yj(n)) (35)

3.3 Update Equation for Cjk(z)
The gradient of Ĵj(n) becomes

∂Ĵj(n)
∂cjk(l)

=
∂q(yj(n))
∂yj(n)

∂yj(n)
∂cjk(l)

= q̇(yj(n))yk(n− l) (36)

yj(n) = xj(n)−
Ljk−1∑

l=0

cjk(l)yk(n− l) (37)

q̇() is a partial derivative of q(), which is an odd function.
If k = 1, then j = 2, and vice versa. Therefore, the
update equation of cjk(l) is given by

cjk(n+ 1, l) = cjk(n, l) + ∆cjk(n, l) (38)
∆cjk(n, l) = µq̇(yj(n))yk(n− l) (39)
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3.4 Statistical Analysis of Convergence
The probability density function (pdf) of the signal
sources are assumed to be even functions. Furthermore,
the signal sources are statistically independent to each
other. Then, they satisfy

E[f(s1(n))g(s2(n))] = E[f(s1(n))]E[g(s2(n))]
= 0 (40)

f() and g() : odd functions

On the other hand, if a very small learning rate µ
is used in Eq.(39), the correction term can be regarded
as E[q̇(yj(n))yk(n − l)]. Since, q̇(yj(n)) and yk(n − l)
are also odd functions, then Eq.(40) can be held. This
means that as y1(n) and y2(n) approach the hT

11s1(n)
and hT

22s2(n), respectively, the correction terms can be
reduced, finally they can be zero.

3.5 Nonlinear Functions
As shown in Eq.(39), q̇(yj(n)) and yj(n− l) are used for
nonlinear functions. They are odd functions. Further-
more, yj(n − l) can be replaced by another squashing
function in order to achieve stable convergence. Opti-
mum nonlinear functions are also highly dependent on
a pdf of the output signal [9],[17]. This subject is not
discussed in this paper. Two kinds of combinations of
f() and g() shown below are considered in simulation.

f(y) = tanh(αy) g(y) = tanh(βy) (41)
f(y) = tanh(αy) g(y) = y (42)

3.6 Convergence Property
When the transmission delays satisfy the condition, that
is delay of Hji(z), j �= i is longer than that of Hii(z),
sj(n) can be cancelled in yi(n), and si(n) cannot be
cancelled in yi(n). As a result si(n) can be separated
in yi(n). On the other hand, signal separation is highly
dependent on the signal levels in the observations [11].
Since, the initial guess for cjk(n) is set to zero. In early
stage in a learning process, xi(n) is mainly extracted
in yi(n). Thus, the signal source sj(n), whose power is
dominant in xi(n), is also dominant in yi(n). This sj(n)
will cancel sj(n) included in the other outputs. However,
in the convolutive blind separation, this cancellation is
strongly affected by transmission delays. For example,
the transmission delays satisfy the above conditions, and
si(n) is not dominant in xi(n), convergence is not good.
Usually, when the sensor xi(n) is located close to the
signal source si(n), the conditions on signal power and
transmission delay for convergence can be satisfied.

3.7 Comparison with Other Algorithm
Thi and Jutten proposed a learning algorithm based on
the fully recurrent network shown in Fig.1 [12]. The

coefficients cjk(n, l) are updated by cancelling cross-
cumulants Cum22(yj(n)yk(n − l)). Furthermore, non-
linear functions are generalized as in instantaneous mix-
tures [4]. On the contrary, in our method, the cost func-
tion is given by E[q(yj(n)], where q() is an even func-
tion having a single minimum point. The algorithm is
derived following the gradient descent methos. Conver-
gence is guaranteed by the assumption on transmission
delay, which was not mentioned in [12]. Even though
the update equation is the same, the derivation process
is different. Furthermore, in our approach, convergence
property can be discussed based on signal levels in the
observations and transmission delays.

4 Simulation

4.1 Simulation Conditions
Signal Sources and Nonlinear Functions
Two channel blind separation of speech signals was sim-
ulated. The speech signals are shown in Fig.3. A learn-
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Figure 3: Waveforms of speech signal sources.

ing rate is 0.001. The following nonlinear functions are
used.

(1) f(y) = tanh(5y) g(y) = tanh(y) (43)
(2) f(y) = tanh(5y) g(y) = y (44)

In the case (2), the learning rate should be reduced for
stable convergence. The simulation results are almost
the same, then the results using the case (1) are shown
in the following.
Measure of Separation
The separation performance is evaluated by the follow-
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ing SNR, defined by using P (z) in Eq.(24)

σ2
s =

2∑
i=1

1
2π

∫ π

−π

|Pii(ejωT )|2dωT (45)

σ2
c =

∑
j �=i

1
2π

∫ π

−π

|Pji(ejωT )|2dωT (46)

SNR = 10 log
σ2

s

σ2
c

[dB] (47)

σ2
s expresses power of the selected signals and σ2

c is that
of the cross components.
Mixing Convolutive Matrix
Hji(z) are 20 tap FIR filters. The ideal impulse response
for C12(z) and C21(z) are shown in Figs.4 and 5, respec-
tively. From these figures, 100th- and 70th-order FIR
filters are required for C12(z) and C21(z), respectively.
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Figure 4: Ideal impulse response of C12(z) =
H12(z)/H22(z).
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Figure 5: Ideal impulse response of C21(z) =
H21(z)/H11(z).

4.2 Separation Performances
SNR defined by Eq.(47) is shown in Fig.6. Approxi-
mately, SNR = 15dB is obtained. Furthermore, the
separated waveforms are shown in Fig.7. They are al-
most the same as the signal sources. Figures 8, 9 show
the amplitude response of Pii(z) with a solid line and
those of Hii(z) with a dashed line. Pii(z) almost ap-
proximates Hii(z). Effect of Hii(z) remains on yi(n) in
this method. In order to equalize Hii(z), another statis-
tical approaches should be employed.
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Figure 6: Learning curves of proposed method. SNR is
defined by Eq.(47).
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Figure 7: Waveforms of separation block outputs.

5 Conclutions

A simple LMS like learning algorithm has been proposed
for a fully recurrent convolutive blind separation. Some
assumption is imposed on transmission delay time in the
mixing process, which are practically acceptable. A cost
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function and the learning algorithm have been derived
based on this assumption. Simulation for two channel
speech source separation has been carried out. High
order FIR filters with 100th- and 70th-order, are used
in an unmixing process. A power ratio of the main and
the cross components is about 15dB.
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