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Abstract

In training neural networks, it is important to reduce
input variables for saving memory, reducing network
size, and achieving fast training. This paper proposes
two kinds of selecting methods for useful input variables.
One of them is to use information of connection weights
after training. If a sum of absolute value of the con-
nection weights related to the input node is large, then
this input variable is selected. In some case, only pos-
itive connection weights are taken into account. The
other method is based on correlation coefficients among
the input variables. If a time series of the input vari-
able can be obtained by amplifying and shifting that of
another input variable, then the former can be absorbed
in the latter. These analysis methods are applied to pre-
dicting cutting error caused by thermal expansion and
compression in machine tools. The input variables are
reduced from 32 points to 16 points, while maintaining
good prediction within 6µm, which can be applicable to
real machine tools.

1 Introduction

Recently, prediction and diagnosis have been very im-
portant in a real world. In many cases, relations between
the past data and the prediction, and the symptoms and
diseases are complicated nonlinear. Neural networks are
useful for these signal processing. Many kinds of ap-
proaches have been proposed [1]–[12].

In these applications, observations, which are the
past data, the symptoms and so on, are applied to the
input nodes of neural networks, and the prediction and
the diseases are obtained at the network outputs. In or-
der to train neural networks and to predict the coming

phenomenon and to diagnose the diseases, it should be
analyzed what kinds of observations are useful for these
purposes. Usually, the observations, which seems to be
meaningful by experience, are used. In order to simplify
observation processes, to minimize network size, and to
make a learning process fast and stable, the input data
should be minimized. How to selected the useful input
variables have been discussed [11]–[12].

In this paper, selecting methods for useful input
variables are proposed. The corresponding connection
weights and correlation coefficients among the input
data are used. The proposed methods are applied to
predicting cutting error caused by thermal expansion
and compression in numerical controlled (NC) machine
tools. Temperature is measured at many points on the
machine tool and in the surroundings. For instance, 32
points are measured, which requires a complicated ob-
servation system. It is desirable to reduce the tempera-
ture measuring points.

2 Network Structure and Equations

Figure 1 shows a multilayer neural network with a single
hidden layer. Relations among the input, hidden layer
outputs and the final outputs are shown here.

uj(n) =
N∑

i=1

wjixi(n) + θj (1)

yj(n) = fh(uj(n)) (2)

uk(n) =
J∑

j=1

wkjyj(n) + θk (3)

yk(n) = fo(uk(n)) (4)
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Figure 1: Multilayer neural network with a single hidden
layer.

fh() and fo() are sigmoid functions. The connection
weights are trained through supervised learning algo-
rithms, such as an error back-propagation algorithm.

3 Analysis Methods for Useful Input Data

3.1 Method-Ia: Based on Absolute Value of
Connection Weights
The connection weights are updated following the error
back-propagation (BP) algorithm. ḟo() and ḟh() are the
1st order derivative of fo() and fh(), respectively.

wkj(n + 1) = wkj(n) + ∆wkj(n) (5)
∆wkj(n) = α∆wkj(n − 1) + ηδkyj(n) (6)

δk = ek(n)ḟo(uk(n)) (7)
ek(n) = dk(n)− yk(n), dk(n) is a target.(8)

wji(n + 1) = wji(n) + ∆wji(n) (9)
∆wji(n) = α∆wji(n − 1) + ηδjxi(n) (10)

δj = ḟh(uj(n))
K∑

k=1

δkwkj(n) (11)

From the above equations, the connection weight wji(n)
is updated by ηδjxi(n). Since η is usually a positive
small number, then by repeating the updating, ηδjxi(n)
is accumulated in wji(n+1). Thus, growth of wji(n+1)
is expressed by E[δjxi(n)], which is a cross-correlation.
On the other hand, as shown in Eq.(11), δj expresses
the output error caused by the jth hidden unit output.
If the input variable xi(n) is an important factor, then
it may be closely related to the output error, and their
cross-correlation becomes a large value. For this reason,
it can be expected that the connection weights for the
important input variables to the hidden units will be
grown up in a learning process. Based on this analysis,

the important input variables are selected by using a
sum of the corresponding connection weights after the
training.

Si,abso =
J∑

j=1

|wji| (12)

3.2 Method-Ib: Based on Positive Connection
Weights
When the input data always take positive numbers, neg-
ative connection weights may reduce the input potential
uj(n) in Eq.(1). Furthermore, when a sigmoid function
shown in Fig.2 is used for an activation function, nega-
tive uj(n) generates small output, which does not affect
the final output. Thus, in this case, the negative con-
nection weights are not useful. Therefore, only positive
connection weights are taken into account. The useful
temperatures are selected based on Si,posi.

Si,posi =
∑

σ

wσi, wσi > 0 (13)

0 u

f (u)

Figure 2: Sigmoid function, whose output is always posi-
tive.

3.3 Method II: Based on Cross-correlation
among Input variables
Dependency among Input variables
First, we discuss using a neuron model shown in Fig.3.
The input potential u is given by

u

x1

y = f(u )

x2

w1 w2

1 (bias)

α

Figure 3: Neuron model.

u = w1x1 + w2x2 + α (14)
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If the following linear dependency is held,

x2 = ax1 + b a and b are constant (15)

then, u is rewrriten as follows:

u = w1x1 + w2(ax1 + b) + α (16)
= (w1 + aw2)x1 + (bw2 + α) (17)

(18)

Therefore, by replacing w1 by w1+aw2 and α by bw2+α,
the input variable x2 can be removed as follows:

u = wx1 + β (19)
w = w1 + aw2 (20)
β = bw2 + α (21)

This is an idea behind the proposed analysis method.
The linear dependency given by Eq.(15) can be analyzed
by using correlation coefficients.
Correlation Coefficients
The ith input variable is defined follows:

xi = [xi(0), xi(1), · · · , xi(L − 1)]T (22)

Correlation coefficient between the ith and the jth vari-
able vectors is given by

ρij =
(xi − x̄i)T (xj − x̄j)
‖ xi − x̄i ‖‖ xj − x̄j ‖ (23)

x̄i,j =
1
L

L−1∑
n=0

xi,j(n) (24)

If xi and xj satisfy Eq.(15), then ρij = 1. In other
words, if ρij is close to unity, then xi and xj are linearly
dependent. On the other hand, if ρij = 0, then they are
orthogonal to each other.
Combination of Data Sets
The modifications by Eqs.(19)–(21) are common in a
MLNN. This means the modifications are the same for
all the input data sets. Let the number of the data sets
be Q. The input variables are re-defined as follows:
Definition of Input Data for Q Data Sets

x
(q)
i = [x(q)

i (0), x(q)
i (1), · · · , x

(q)
i (L − 1)]T (25)

X(q) = [x(q)
1 , x

(q)
2 , · · · , x

(q)
N ] (26)

Xtotal =




X(1)

X(2)

...
X(Q)


 = [x̃1, x̃2, · · · , x̃N ] (27)

x̃i =




x
(1)
i

x
(2)
i
...

x
(Q)
i




(28)

x
(q)
i is the input variable vector of the qth input data set.

X(q) is the qth input data set, Xtotal is a total input
data set, which includes all the input data. In x̃i, the
ith variables at all sampling points, n = 0, 1, · · · , L − 1
and for all data sets q = 1, 2, · · · , Q are included. Using
these notations, the correlation coefficients are defined
as follows:

ρij =
(x̃i − ¯̃xi)T (x̃j − ¯̃xj)
‖ x̃i − ¯̃xi ‖‖ x̃j − ¯̃xj ‖ (29)

¯̃xi =
1

LQ

Q∑
q=1

L−1∑
n=0

x
(q)
i (n) (30)

One example of the combined input data is shown in
Fig.4, where Q = 4.

data set 1 data set 2 data set 3 data set 4

4L

ρij

Figure 4: Combined input variable vectors.

Aberage of Correlation Coefficients
Method-IIa
The correlation coefficients for all combinations of the
input variables are calculated by Eq.(29). Furthermore,
dependency of the ith variable is evaluated by

ρ̄
(1)
i =

1
N − 1

N∑
j=1
�=i

ρij (31)

ρ̄
(1)
i expresses average of the correlation coefficients be-

tween the ith variable and all the other variables. Thus,
the variables, which have small ρ̄i are selected for the
useful input variables.
Method-IIb
Let xσ be the selected variable vectors, and the num-
ber of xσ be N1. The correlation coefficients ρ

(2)
ij are

evaluated once more among the selected σ variable vec-
tors. The variable vectors are further selected based on
ρ
(2)
ij . The variables having large ρ

(2)
ij are removed from

the selected set. Instead, the variables, which are not
selected in Method-IIa and have small ρ̄

(1)
i , are selected

and added to xσ. This process is repeated until all the
selected variables have small ρ

(2)
ij .
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3.4 Comparison with Other Analysis Methods
There are several methods to extract important com-
ponents among the input data. One of them is prin-
cipal component analysis. The other method is vector
quantization. In these methods, however, in order to
extract these components and vectors, many input data
are required. Our purpose is to simplify the observation
process for the input data, that is to select useful in-
put variables, which are directly observed. It is difficult
to obtain the useful observation data from the principal
components and the representative vectors.

4 Prediction of Cutting Error Caused by
Thermal Expansion and Compression

Numerical controlled (NC) machine tools are required
to guarantee very high cutting precision, for instance
tolerance of cutting error is within 10µm in diameter.
There are many factors, which degrade cutting preci-
sion. Among them, thermal expansion and compression
of machine tools are very sensitive in cutting precision.
In this paper, the multilayer neural network is applied
to predicting cutting error caused by thermal effects.

4.1 Structure of NC Machine Tool
Figure 5 shows a blockdiagram of NC machine tool.
Distance between the cutting tool and the objective
is changed by thermal effects. Temperatures at many

x

z

Frame  ( front, back )

Z  Axis Slide

Index

Head Stock

X  Axis Slide

Cutting Tool

Objective

Figure 5: Rough sketch of NC machine tool.

points on the machine tool and in surrounding are mea-
sured. The number of measuring points is up to 32
points.

4.2 Multilayer Neural Network
Figure 6 shows the multilayer neural network used pre-
dicting cutting error of machine tools. The temperature
and deviation are measured as a time series. Thermal
expansion and compression of machine tools are also

dependent on hysteresis of temperature change. xi(n)
means the temperature at the ith measuring point and
at the nth sampling points on the time axis. Its delayed
samples xi(n − 1), xi(n − 2), · · · are generated through
the delay elements ”T” and are applied to the MLNN.
One hidden layer and one output unit are used.
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Figure 6: Neural network used for predicting cutting error
caused by thermal effects.

4.3 Training and Testing Using All Input vari-
ables
Four kinds of data sets are measured by changing cut-
ting conditions. They are denoted D1, D2, D3, D4. Since
it is not enough to evaluate prediction performance of
the neural network, data sets are increased by combin-
ing the measured data sets by linear interpolation, de-
noted D12, D13, D14, D23, D24, D34. Some of the mea-
sured temperatures in time are shown in Fig.7. Training
and testing conditions are shown in Table 1. All mea-
suring points are employed. The data sets except for D1

are used for training and D1 is used for testing.
Figure 8 shows a learning curve using all data sets,
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Figure 7: Some of measured temperatures in time.
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Table 1: Training and testing conditins
Measuring points 32 points
Training data sets D2, D3, D4

D12, D13, D14, D23, D24, D34

Test data set D1

Learning rate η 0.001
Momentum rate α 0.9

Iterations 100,000

except for D1, and all measuring points, that is 32
points. The vertical axis means the mean squared error
(MSE) of difference between the measured cutting error
and the predicted cutting error. It is well reduced.
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Figure 8: Learning curve of cutting error prediction. All
measuring points are used.

Figure 9 shows cutting error prediction under the con-
ditions in Table 1. The prediction error is within 6µm,
which satisfies the tolerance 10µm in diameter.
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Figure 9: Cutting error prediction. All measuring points
are used.

5 Selection of Useful Measuring Points

The useful 16 measuring points are selected from 32
points by the analysis methods proposed in Sec.3.

5.1 Selection Based on Connection Weights
The measuring points are selected based on a sum of ab-
solute value of the connection weights Si,abso (Method-
Ia) and on a sum of positive connection weights Si,posi

(Method-Ib). Figure 10 shows both sums. The horizon-
tal axis shows the temperature measuring points, that
is 32 points. Their prediction are shown in Fig.11. The
selection method using Si,posi is superior to the other us-
ing Si,abso, because the temperature in this experience
is always positive. The prediction error is within 6µm.
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Figure 10: Sum of absolute value of temperature and pos-
itive temperature.
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Figure 11: Cutting error prediction with 16 measuring
points selected by connection weights.

5.2 Selection Based on Correlation Coefficients
In Method-IIb, after the first selection by Method-IIa,
the variables, whose correlation coefficients ρ

(2)
ij exceed

0.9 are replaced by the variables, which are not selected
in the first stage and have small ρ̄

(1)
i . Simulation re-

sults by both methods are shown in Fig.12. The result
by Method-IIb ”Correlation(2)” is superior to that of
Method-IIa ”Correlation(1)”. Because the former more
precisely evaluates the correlation coefficients.
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Figure 12: Cutting error prediction with 16 measuring
points selected by correlation coefficients.

5.3 Comparison of Selected Measuring Points
Table 2 shows the selected temperature measuring
points by four kinds of the methods. Comparing the
selected measuring points by Method-Ib and Method-
IIb, the following 9 points 4, 11, 12, 14, 15, 21, 22, 28, 31
are common. However, the selected measuring points
are not exactly the same. A combination of the measur-
ing points seems to be important.

Table 2: Measuring points selected by four kinds of meth-
ods.

Methods Measuring points
Method-Ia 2, 3, 6, 7, 9,15,18,19,

Sum of absolute values 21,22,24,25,26,28,30,31
Method-Ib 1, 4, 7, 9, 11,12,13,14,

Sum of positive weights 15,19,21,22,23,26,28,31
Method-IIa 3, 4, 7, 8,12,14,16,18,

Correlation(1) 19,20,21,22,23,25,31,32
Method-IIb 3, 4, 8,11,12,14,15,16,

Correlation(2) 20,21,22,27,28,30,31,32

6 Conclutions

Two kinds of methods, selecting the useful input vari-
ables, have been proposed. They are based on the con-
nection weights and the correlation coefficients among
the input variables. The proposed methods have been
applied to predicting cutting error caused by thermal
effects in machine tools. Simulation results show pre-
cise prediction with the reduced number of the input
variables.
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