
An Adaptive Penalty-Based Learning Extension for
Backpropagation and its Variants

Boris Jansen, Student Member, IEEE, and Kenji Nakayama, Member, IEEE

Abstract— Over the years, many improvements and refine-
ments of the backpropagation learning algorithm have been
reported. In this paper, a new adaptive penalty-based learning
extension for the backpropagation learning algorithm and its
variants is proposed. The new method initially puts pressure
on artificial neural networks in order to get all outputs for
all training patterns into the correct half of the output range,
instead of mainly focusing on minimizing the difference between
the target and actual output values. The technique is easy to
implement and computationally inexpensive. In this study, the
new approach has been applied to the backpropagation learning
algorithm as well as the RPROP learning algorithm and
simulations have been performed. The superiority of the new
proposed method is demonstrated. By applying the extension,
the number of successful runs can be greatly increased and
the average number of epochs to convergence can be well
reduced on various problem instances. Furthermore, the change
of the penalty values during training has been studied and its
observation shows the active role the penalties play within the
learning process.

I. INTRODUCTION

Since the introduction of the backpropagation (BP) [1]
learning algorithm, it has proved to be efficient in many
applications. Presently, this gradient descent method has
emerged as one of the most well-known and popular learning
algorithms for artificial neural networks (ANNs). However,
in various cases its convergence speed often tends to be very
slow and it often yields suboptimal solutions.

As a result, much research has been focusing on improving
the BP learning algorithm and numerous new algorithms and
techniques have been proposed. Many attempts to speed up
training and to reduce convergence to local minima have been
made in the context of dynamically adjusting the learning rate
during training, including learning algorithms such as SAB
[2] and SuperSAB [3], Quickprop [4], and RPROP [5], [6].

Other directions that have been studied, include the appli-
cation of alternative cost functions. Squared-error functions
have been replaced by possible better cost functions, such as
the cross-entropy measure [7]. Furthermore, error functions
have been extended with extra terms to direct the search in
the weight space towards specific goals, such as the addition
of noise as in simulated annealing [8], [9] or the application
of penalties as in weight decay [10], [9].

In this paper, a new adaptive penalty-based extension for
various objective functions is proposed. Penalties are applied

Boris Jansen is with the Graduate School of Natural Science and
Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192,
JAPAN (email: boris@leo.ec.t.kanazawa-u.ac.jp).

Kenji Nakayama is with the Graduate School of Natural Science and
Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192,
JAPAN (email: nakayama@t.kanazawa-u.ac.jp).

in order to put pressure on incorrect binary outputs to get
them initially into the correct half of the output range. The
penalties are dynamically adjusted during training to reflect
the difficulty of this task. Here, the new method is applied
to standard backpropagation as well as to the effective
RPROP learning algorithm. Simulations have been performed
on a number of problem instances and the performance
of the extended algorithms is compared to their original
counterparts.

II. NEW ADAPTIVE PENALTY-BASED LEARNING

EXTENSION

A. Idea behind New Approach

Consider learning of artificial neural networks with binary
target values +1 and -1. Of course, the targets also can be
1 and 0, or values from any other binary defined set. The
learning process can be divided into two phases. In the first
phase, an ANN is trained so as to move all its outputs for
all training patterns to the correct side, that is greater than
or less than a certain threshold, which equals zero in this
case. In the second phase, the ANN is trained so as to move
its outputs located in the correct region towards the actual
targets, that is +1 or -1. Compared to the second phase, it
can be expected that the first phase is relatively complex
and time-consuming, because for each single output this
process easily affects many other outputs. Furthermore, these
two phases are likely to coexist among the different outputs
during training, meaning that the ��� output has already been
located into the correct half of the output range, while the
��� output still resides on the wrong side. Therefore, the
difficulty of learning differs for each output.

We propose an adaptive penalty-based learning extension.
In this method, learning for the outputs located on the wrong
side, will be accelerated by applying penalties. In order
to make this acceleration more effective, the penalties are
increased epoch by epoch, while the outputs reside in the
incorrect half of the output range. Furthermore, in order
to make the learning process more stable, penalties are
gradually decreased after the outputs have been moved to
the correct side.

Figures 1 and 2 show two example situations. A circle is
a target output and a square is an actual output of an ANN.
The value �� represents the input pattern number. In Fig. 1,
all network outputs are located on the correct side. On the
other hand, in Fig. 2, the output for the input pattern ��
resides in the incorrect half of the output range. Moving this
output towards the correct, lower side, will be affected by
the outputs for the input patterns �� and ��, which are being



Fig. 1. Network having all its outputs in the correct half of the output
range

Fig. 2. Network having an output residing in the incorrect half of the
output range

moved towards +1. Therefore, it can be expected that it will
take a long time to convergence, if ever reached.

In the new proposed method, the correction term for the
output of �� is amplified by applying an adaptive penalty. The
amplification, that is the penalty, is adaptive in the sense that
it is being increased every epoch, while the output resides
on the wrong, in this case upper, side. As a result, more
and more pressure is being put on the ANN in order to
move the incorrect output to the right side. After the output
enters into the correct lower half of the output range, the
penalty is decreased. However, in order to avoid the danger
that the output ‘makes a big jump back’ to the incorrect
side, the penalty is gradually decreased epoch by epoch, for
example opposite to a sudden reset of the penalty. This way
of controlling penalties can make the learning process more
stable.

B. Formal Description

In the backpropagation learning algorithm, the errors of
output neurons are backpropagated through the network
during training. The error signal ������� of output neuron
� at epoch � for training pattern �, can be defined by taking
the difference between the target output ������� and the actual
output �������:

������� � ������� � ������� (1)

In the new proposed method, for every output neuron �

and every training pattern �, a penalty ������� is created.
The error backpropagated in the new algorithm is given by
the following equation:

������� ��� � �������������� (2)

whereby the penalties are being updated after each epoch as
defined below:

������� ��

�

������
�����

�������������� �� if ������� is at
the same side
as �������

��	���������
�� ��	
� otherwise

(3)

and �� 	 �, �� 
 � and ��	
 � �. The initial penalties
�����
� are set to one.

The application of the new proposed method results in the
addition of penalties to the backpropagated error signal. The
task of these penalties is to put pressure on the network to
get all the outputs initially into the correct half of the output
range.

The penalties are dynamically adjusted as shown in Eq. (3)
in order to reflect the hardness of this task, by assuming that
the more difficult it is to move a certain output for a certain
pattern to the right side, the more often it resides in the
incorrect half of the output range. Every epoch an output for a
certain pattern resides in the incorrect half, its corresponding
penalty is increased in order to put more pressure on the
network to move the output to the right side. Once an output
for a certain pattern reaches its correct half of the output
range, its corresponding penalty is gradually decreased and
the focus of the network on moving the output to the right
side shifts away to outputs for which the corresponding
penalties are increasing. From a different point of view, the
error surface can be considered dynamic.

Figure 3 shows a representative curve of a change of a
single penalty during training. A penalty is being raised
while its corresponding output resides at the wrong side.
The change occurs exponentially, because the penalty is
multiplied by �� every epoch the output resides in the
incorrect half. Once an output reaches the correct side, the
penalty is decreased by multiplying it with �� to a minimum
of one. The steepness of the upward and the downward curve
is controlled by the parameters �� and ��, respectively. Once
an output enters its correct half of the output range, it is not
guaranteed that the output stays there. Therefore, multiple
successive phases of increasing and decreasing a penalty can
be expected during training.

The new proposed method implicitly provides a mecha-
nism to escape from local minima. Whenever a network con-
verges towards a local minimum, penalties will be increased
for the outputs residing in the incorrect half of the output
range. Once the penalties have been raised to large enough
values, the network might ‘jump’ out of or move away from
the local minimum.

Dynamic penalties are preferred over static penalties for
two reasons. Different states of a neural network require
different penalty values. Dynamic penalties are able to adjust
to the shape of the error surface during learning, opposite to



Fig. 3. Representative curve of a change of a single penalty during training

static penalties which lack this ability. Furthermore, static
penalties still have the risk that a neural network moves
towards a local minimum, as a result of penalty values not
large enough to move away from the local minimum.

Finally, it should be noted that it is not guaranteed that
the proposed method will converge to a global minimum.
However, from the ability of the penalties to adjust to the
error surface and to push networks out of local minima,
it can be expected that the likelihood of convergence to a
global minimum is increased. Furthermore, the new method
is a true extension, similar to simulated annealing or weight
decay, meaning that in theory it can be applied to any
binary-output error-based objective function regardless of the
underlying learning algorithm, and even in combination with
other extensions.

III. COMPARATIVE STUDY

In order to give an indication of the performance of the
new proposed method in terms of convergence speed and
success rate, comparisons have been performed between the
standard backpropagation and RPROP learning algorithms
extended with the new adaptive penalty-based method on
one side and their original counterparts on the other side on
various problem instances.

A. Test Problems

1) � -Bit Parity Problem: The � -bit parity problem is a
generalization of the ‘exclusive-or’ (XOR) problem. The task
is concerned with detecting whether the number of activated
input bits is even or odd. In this study, � -bit input strings
composed of ������� are considered and the corresponding
target output values are defined as �� and �� for input data

consisting of an even, respectively odd number of activated
bits. The number of training patterns is equal to �� .

The � -bit parity problem is considered as a very hard
problem to be solved by neural networks, because a single
‘flip’ of a bit in the input string requires a complementary
classification.

2) � -� -� Encoder Problem: The task of the � -� -�
encoder problem is to learn an auto-association between �

different input/output patterns. Each training pattern has one
bit turned on, i.e. set to one, while the remaining bits are
set to zero. Therefore, the number of training patterns equals
� .

The network applied to learn this auto-association is a two-
layered � -� -� feed-forward neural network. The complex-
ity of this task resides in the fact that the number of hidden
neurons is less than the number of input and output neurons,
i.e. � 	 � . Consequently, the hidden neurons perform
compression or encoding, while the output neurons perform
decompression or decoding. Whenever � � ����� �, the
network is being referred to as a ‘tight’ encoder.

3) Two Spirals Problem: The task of the two spirals
problem is to learn to discriminate between two sets of
training points which lie on two distinct spirals in the -
� plane. These spirals coil three times around the origin and
around one another. The training data consists of 194 patterns
and here, the target values describing the two classes for the
two different spirals are within the set ���� ��.

The difficulty of the two spirals problem has been demon-
strated in many attempts to solve this problem by applying
backpropagation and many of its variants over the years. One
modification to the adapted neural networks that has often
been applied is the usage of shortcut connections [11]. By us-
ing shortcut connections, every neuron is not only connected
to all neurons in the last previous layer as is in standard
feed-forward neural networks, but a neuron is connected to
all neurons in all previous layers. Shortcut connections may
ease the training process, because information learned by
neurons is directly inserted in all its following neurons.

B. Simulation Setup

The neural networks used in our simulations have been
developed using the Java Object Oriented Neural Engine
(Joone)[12], an open source neural net framework imple-
mented in the Java programming language.

All the adapted neural networks used in our experiments
are multilayer feed-forward neural networks. Here, the back-
propagation learning algorithm operates in online training
mode, i.e. weights are updated on a pattern-by-pattern basis.
The connection weights and biases for all networks were
randomly initialized within the interval ���� ��. A constant
value of 10000 was used for the maximum penalty ��	
 in
all simulations featuring the new proposed method. Varying
parts of the applied network configurations are summarized
for each experiment individually together with the simulation
results in the tables below. RPROP’s parameters set to their
default, previously proposed values [5] are omitted from this
network configuration summary.



In addition, a constant value of 0.1 was added to the
derivative of the logistic and the hyperbolic tangent acti-
vation function for all algorithms, to overcome the ‘flat
spot’ problem [4], i.e. the problem where training progresses
very slowly, because the derivative of the activation function
approaches zero, caused by the fact that the output of a
neuron is close to one of its asymptotic output values.

Learning of a binary task was considered complete, if the
‘40-20-40’ criterion, described by Fahlman [4], was fulfilled,
i.e. all outputs of output neurons for all training patterns are
within the correct upper or lower 40% of its output range.
The maximum training time was set to 20000 epochs for all
experiments.

For each problem instance and network configuration,
25 independent runs have been performed. The number
of successful runs and the average number of epochs to
convergence, neglecting unsuccessful runs, are reported.

C. Simulation Results

Tables I and II show the simulation results for the 6-bit and
8-bit parity problem, respectively. SR stands for success rate,
� is the learning rate used in the backpropagation learning
algorithm and ��	
 is the maximum update-value used in
the RPROP learning algorithm.

TABLE I

SIMULATION RESULTS FOR 6-BIT PARITY PROBLEM

6-Bit Parity
Algorithm Epochs SR Settings

BP 9879 2/25 � : 0.0005
7916 2/25 � : 0.001

RPROP 7492 4/25 ���� : 0.001

5953 25/25
� : 0.0005
�
� : 0.9
�
� : 1.05

5522 24/25
� : 0.001
�
� : 0.8
�
� : 1.05

6270 21/25
� : 0.001
�
� : 0.9

BP + �
� : 1.01

Extension
3436 25/25

� : 0.001
�
� : 0.9
�
� : 1.05

6567 22/25
� : 0.001
�
� : 0.9
�
� : 1.1

4695 25/25
� : 0.001
�
� : 0.95
�
� : 1.05

7792 7/25
���� : 0.001
�
� : 0.9

RPROP + �
� : 1.05

Extension
7516 19/25

���� : 0.001
�
� : 0.99
�
� : 1.05

Network structure : 6-6-1
Activation function : hyperbolic tangent

The low number of success rates for the backpropagation
and RPROP learning algorithm indicate the difficulty of this
problem. The networks get easily trapped in local minima.

TABLE II

SIMULATION RESULTS FOR 8-BIT PARITY PROBLEM

8-Bit Parity
Algorithm Epochs SR Settings

BP
7663 2/25 � : 0.0005
5961 3/25 � : 0.001

RPROP - 0/25 ���� : 0.001

4931 23/25
� : 0.0005,
�
� : 0.9

BP + �
� : 1.05

Extension
2807 20/25

� : 0.001,
�
� : 0.9
�
� : 1.05

RPROP +
10444 14/25

���� : 0.001

Extension
�
� : 0.99
�
� : 1.05

Network structure : 8-8-1
Activation function : hyperbolic tangent

However, applying the new proposed method resulted in an
increase of the number of successful runs by a magnitude.
The new method provides a way to escape from local
minima. Moreover, in general the average number of epochs
to convergence was also greatly reduced by the new method.

Observing the results in greater detail, we see that the
parameter values �� and �� of the new method rather have
some influence on the performance. Tuning the parameters
carefully can result in a very good performance, but searching
for an optimal parameter set is usually considered a very
time-consuming task. However, less well tuned parameters
still result in a performance much better than the learning
algorithms without the proposed extension.

In comparison with backpropagation, the RPROP learning
algorithm extended with the new proposed approach required
a less dynamic error-surface, which is expressed in the
fact that the decremental penalty rate �� was set very
close to one in order to obtain satisfactory results. The two
main differences between the backpropagation and RPROP
learning algorithm are a static learning rate versus a dynamic
learning rate and online training mode versus batch mode.
The RPROP learning algorithm is an improvement of the
backpropagation learning algorithm and it has proven its
superiority in many cases [5], [6]. In general, the RPROP
learning algorithm converges faster to global or local minima.
As a consequence, it can be expected that the RPROP
learning algorithm is more sensitive to, that is, responds
faster to error-surface changes. Therefore, this might be the
reason that the RPROP learning algorithm requires a less
aggressive, but more smoothly changing error-surface.

Tables III, IV and V show the results for the 8-2-8, 32-2-32
and 48-2-48 encoder problem, respectively.

It can be easily noticed that the learning algorithms
extended with the new approach outperform their original
counterparts also for the encoder problem. For a large range
of different learning rates �, standard backpropagation was
unable to find a solution for the tight encoder problems.
However, backpropagation extended with the new method



TABLE III

SIMULATION RESULTS FOR 8-2-8 ENCODER PROBLEM

8-2-8 Encoder
Algorithm Epochs SR Settings

BP - 0/25 � : 0.005
RPROP 99 25/25

BP +
4883 22/25

� : 0.005

Extension
�
� :0.9999

�
� :1.01

RPROP + 94 25/25 �
� : 0.9999

Extension �
� : 1.01

Network structure : 8-2-8
Activation function : logistic

TABLE IV

SIMULATION RESULTS FOR 32-2-32 ENCODER PROBLEM

32-2-32 Encoder
Algorithm Epochs SR Settings

RPROP 3727 25/25
RPROP +

2985 25/25
�
� : 0.9999

Extension �
� : 1.01

Network structure : 32-2-32
Activation function : logistic

was still able to find a solution for the 8-2-8 encoder in
88%.

The RPROP learning algorithm has a much more satis-
factory performance, even on complex encoder problems.
RPROP easily finds a solution for the 8-2-8 and 32-2-32
encoders, however by applying the new method the average
number of epochs to convergence was reduced. For the 48-2-
48 encoder problem, RPROP also experienced difficulties and
was unable to find a solution in all runs, while by applying
the new proposed method in combination with the RPROP
learning algorithm, the networks converged to a solution in
all runs.

Table VI shows the simulation results of the two spirals
problem. All applied ANNs used shortcut connections.

Again, the learning algorithms extended with the new
proposed method are superior to their original counterparts.
Although backpropagation as well as the RPROP learning
algorithm are able to find solutions, the number of successful
runs is greatly increased by applying the new method and
in general the average number of epochs to convergence is
decreased.

D. Observation of Penalties

In order to learn more about the effects and behavior of
the applied penalties, the penalty values during training have
been studied. The lower the values of the penalties are during
the learning process, the less pressure the learning algorithm
puts on the network, and the more the extended learning
algorithm resembles its original counterpart. On the other
side, the higher the penalty values are, the more pressure the
learning algorithm puts on the network to get the outputs into
the correct half of the output range, and the more it operates

TABLE V

SIMULATION RESULTS FOR 48-2-48 ENCODER PROBLEM

48-2-48 Encoder
Algorithm Epochs SR Settings

RPROP 13914 14/25
RPROP +

12170 25/25
�
� : 0.9999

Extension �
� : 1.01

Network structure : 48-2-48
Activation function : logistic

TABLE VI

SIMULATION RESULTS FOR TWO SPIRALS PROBLEM

Two Spirals
Algorithm Epochs SR Settings

BP
14141 7/25 � : 0.0005
9838 9/25 � : 0.001

RPROP 8964 16/25 ���� : 0.001

11650 18/25
� : 0.0005
�
� : 0.99

BP + �
� : 1.001

Extension
9005 19/25

� : 0.001
�
� : 0.99
�
� : 1.001

7179 23/25
���� : 0.001
�
� : 0.9999

RPROP + �
� : 1.001

Extension
9259 25/25

���� : 0.001
�
� : 0.99999
�
� : 1.001

Network structure : 2-5-5-5-1 +
shortcut connections

Activation function : hyperbolic tangent

differently from the original learning algorithms.
Here, a single representative simulation run of a neural

network, implementing the backpropagation learning algo-
rithm extended with the new proposed method and having
its parameter values �, �� and �� set to 0.001, 0.9 and
1.05 respectively, applied to the 6-bit parity problem, has
been further investigated. For this single run, the ‘40-20-40’
criterion was fulfilled at the ��
�� epoch.

By observing the change of the penalty values that takes
place during training, two main groups of penalties can be
characterized. Most penalties belong to the first group, where
the penalties undergo a change only in the beginning of the
learning process and their values vary somewhere between
1 and 20. Of course, this range is highly dependent on the
parameter values �� and ��. An example of a change of
a single penalty, representative for the penalties of the first
group, is shown in Fig. 4. The second group contains penal-
ties, which values are raised to larger values, somewhere in
the range of 1 to 100. Furthermore, these penalties often
seem to undergo a change longer than the penalties from the
first group. A representative for the penalties of the second
group is shown in Fig. 5.

Not only from the results of the performed simulations,
also from the observation of the change of penalty values
during training, it can be concluded that the penalties in



0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

Epoch

P
en

al
ty

 v
al

ue

Fig. 4. Representative graph of the change of the values of a penalty from
the first group

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

Epoch

P
en

al
ty

 v
al

ue

Fig. 5. Representative graph of the change of the values of a penalty from
the second group

the new proposed method do play an active role in the
learning process. Especially, the penalties from the second
group heavily pressure the neural network in order to get the
outputs in the correct half of the output range.

E. Tuning Extension Parameters

In the new proposed method two important parameter
values, namely �� and ��, need to be determined. The two
parameters have a great influence on the performance of
the new method and are problem dependent. The maximum
penalty value ��	
 seems to have a rather small influence on
the performance of the learning algorithm, at least if it is set
to a large enough value. How to determine the decremental
and incremental penalty values efficiently remains an open
problem.

IV. CONCLUDING REMARKS

A new adaptive penalty-based approach applicable as an
extension for squared-error functions in backpropagation
and its variants is proposed. The new method initially puts
pressure on artificial neural network in order to get all the
outputs for all training patterns into the correct half of the
output range, instead of mainly focusing on minimizing the
difference between the target and actual outputs.

Simulations have been performed and the results have
demonstrated the usefulness of the proposed approach. By
applying the new algorithm, the number of successful runs
can be greatly increased and the average number of epochs
to convergence can be well reduced on various problem
instances. The new method is easy to implement and com-
putationally inexpensive.

Furthermore, the observation of the change of the penalty
values during training has demonstrated the active role the
penalties play within the learning process.

Future research will also be directed towards learning
tasks consisting of patterns having continuous target output
values. We intent to investigate on how to decide appropriate
thresholds defining the output halves for real-values output
patterns. Furthermore, how to decide appropriate decremental
and incremental penalty values, i.e. values for �� and �� will
also be a future research project.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, vol. 1, pp. 318–362,
1986.

[2] M. R. Devos and G. A. Orban, “Self adaptive backpropagation,” in
Proceedings of NeuroNimes 1988, Nimes, France, 1988.

[3] T. Tollenaere, “SuperSAB: fast adaptive back propagation with good
scaling properties,” Neural Networks, vol. 3, no. 5, pp. 561–573, 1990.

[4] S. E. Fahlman, “An empirical study of learning speed in back-
propagation networks, Tech. Rep. CMU-Cs-88-162, 1988.

[5] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” in Proceedings of
the IEEE International Conference on Neural Networks, San Fran-
cisco, CA, 1993, pp. 586–591.

[6] M. Riedmiller, “Advanced supervised learning in multi-layer per-
ceptrons - from backpropagation to adaptive learning algorithms,”
International Journal of Computer Standards and Interfaces, Special
Issue on Neural Networks, vol. 16, pp. 265–278, 1994.

[7] C. M. Bishop, Neural networks for pattern recognition. Oxford:
Clarendon Press, 1995.

[8] J. Robert M. Burton and G. J. Mpitsos, “Event-dependent control of
noise enhances learning in neural networks,” Neural Networks, vol. 5,
no. 4, pp. 627–637, 1992.

[9] N. K. Treadgold and T. D. Gedeon, “Simulated annealing and weight
decay in adaptive learning: the SARPROP algorithm,” IEEE Transac-
tions on Neural Networks, vol. 9, no. 4, pp. 662–668, July 1998.

[10] P. Werbos, “Backpropagation: past and future,” in Proceedings of the
IEEE International Conference on Neural Networks (ICNN), 1988, pp.
343–353.

[11] K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,” in
Proc. of the 1988 Connectionist Summer School. Morgan Kaufman,
1988.

[12] P. Marrone. (2005) Java object oriented neural engine (JOONE).
[Online]. Available: http://www.jooneworld.com


