Classification of Multi-frequency Signals with Random Noise Using
Multilayer Neural Networks

Kazuyuki HARA Kenji NAKAYAMA
Graduate School of Nat. Sci. & Tech., Faculty of Tech., Kanazawa Univ.

2-40-20 , Kodatuno , Kanazawa , 920 JAPAN
E-mal : hara@haspnnl.ec.t.kanazawa-u.ac.jp
nakayama@haspnnl.ec.t.kanazawa-u.ac.jp

ABSTRACT Frequency analysis capability of multilayer neural networks, trained by back-propagation
(BP) algorithm is investigated. Multi-frequency signal classification is taken into account for this purpose.
The number of frequency sets, that is signal groups, is 2~5, and the number of frequencies included in a
signal group is 3~5. The frequencies are alternately located among the signal groups. Through computer
simulation, it has been confirmed that the neural network has very high resolution. Classification rates
are about 99.5% for training signals, and 99.0% for untraining signals. The results are compared with
conventional methods, including Euclidean distance with accuracy of about 65%, Fourier transform with
accuracy of about 10~30%, and using very high-Q filters with a huge number of computations. The neural
network requires only the same number of inner products as the hidden units. Frequency sensitivity and
robustness for the random noise are studied. The networks show high frequency sensitivity, namely,
the networks have high frequency resolution. Random noise are added to the multi-frequency signals to
investigate how does the network cancel uncorrelated noise among the signals. By increasing the number

of samples, or training signals, effects of random noise can be cancelled.

I INTRODUCTION

Advantage of multilayer neural networks trained
by the back-propagation (BP) algorithm is to extract
common properties, features or rules, which can be
used to classify data included in several groups [1).
Especially, when it is difficult to analyze the common
features using conventional methods, the supervised
learning, using combinations of the known input and
output data, becomes very useful. This application
field includes, for instance, pronunciation of English
text, speech recognition, image compression, sonar
target analysis, stuck market prediction and so on
[2]-[6]. In this paper, classification performance of
the neural networks is discussed based on frequency
analysis. Multi-frequency signals are employed for
this purpose. Especially, we are interested in super-
resolution, which observation interval and the num-
ber of samples are very limited. Performances of mul-
tilayer neural networks will be investigated based on
very limited information. Furthermore, the results
are compared with conventional methods in the fre-
quency analysis field, including Euclidean distance,
Fourier transform and Filtering methods. Robust-
ness for random noise are also investigated.

II MULTI-FREQUENCY SIGNALS
Multi-frequency signals are defined by
R

Xpm(n) = E Amyrsin(wpenT + ¢mr) (1)
r=1
n = 1~N, wpr =27fpr

- M samples of Xpm(n),m =1~ M , are included
in the group X, as follows.

Xp = {Ipm(n)’.m =1~ M}ap =1~P (2)

P signal groups, Xp,p =1~ P, are assumed.
T is a sampling period. The signals have N sam-
ples. In one group, the same frequencies are used.

FP=[fplrfp2"“,pr]HZ,P=1~P (3)

Amplitude A,;, and phase ¢,,, are different for
each frequency in the same group. They are gener-
ated as random numbers , uniformly distributed in
following ranges.

0 < Amrsl (4)
0 < émr<2m (5)

III MULTILAYER NEURAL NETWORK

A two-layer neural network is taken into account.
N samples of the signal Xp,m(n) are applied to the
input layer in parallel. The nth input unit receives
the sample at nT.

The number of output units is equal to that of
the signal groups P. The neural network is trained
so that a single output unit responds to one of the
signal groups.

Training and Classification
Sets of signals are categorized into training and
untraining data sets, denoted by X7, and Xy, , re-



spectively. Their elements are expressed by Xrpm(n)
and Xypm(n), respectively.

X, = [X7p, Xvpl (6)
Xrp = {XTpm(n),m =1~ MT} (M
XUp = {XUper(n),m =1~ MU} (8)

The neural network is trained by using Xz,m(n),
m = 1 ~ My, for the pth group. After the training
is completed , the untraining signals Xypm(n) are
applied to the nueral network , and the output is
calculated. For the input signal Xypm(n), if the pth
output y, has the maximum value, then the signal
is exactly classified. Otherwise , the network fails in
classification .

IV SIMULATION

4.1 Multi-frequency signals

Seven kinds of multi-frequency signals are used as
shown in Table 1. The number of frequency com-
ponents are 3 ~ 5, and the signal groups are 2 ~
5, respectively. In all cases, the frequency compo-
nents are localed alternately between the groups. In
Case—2.2 and 3.3, the number of samples is N=15 and
N=20, the sampling period is T=1/15 and 0.05sec,
respectively. In other cases, the sampling frequency
is 10Hz, that is T=0.1sec. The number of samples is
N=10. Therefore, the observation interval is 1 sec in
all cases.

4.2 Neural Network Classification

Table 1 illustrates simulation results. The training
signal set of each group is 200, that is Xrpm(n),m=1
~ 200. 1800 signals are used as untraining signals
in each group. Namely, Xypm(n),m=1 ~ 1800. In
Case-1.1, 1.2 and 2.2, training converged using one
hidden unit. Accuracy for X7, is, therefore 100 %.
For the untraining signals, the classification rate is
around 99 %. In other cases, the training did not
completely converge. However, classification accu-
racy is also very high, that is about 99.5 %. Thus,
highly exact classification can be achieved. Further-
more, improving accuracy rates of Case-3.2 is in-
vestgated. Increasing the number of samples n of
Xpm(n), accuracy improved step by step. 40 sam-
ples are needed at least to have 100 % accuracy.

4.3 Frequency Sensitivity

Frequency sensitivity correspond to frequency res-
olution. When one of the frequency components
is slightly shifted, that is, approaches to another
group’s, it is necessary for the networks not to re-
spond. It is measured by difference between the
sifted frequency signals and not shifted one. Case-
1.1 is used. Frequency components are shifted in a

Table 1: classification results by neural network (%]

Hidden Accuracy
CASE Frequency Sets [He] Units X XU
T1 Py = (1,3, T 1%‘& —3r 4]
: Fo = [1.5,3.5,3.5] 100 94.5
1.2 F, = [1,3,3] i 100 .
Fp = [1.1,3.1,8.1] 100 99.7
2.1 F; = (1,1.5,3,2.5,3 ) 83.8 77.3
Fa = [1.25,1.75,2.25,2.75,8.28] 86.8 82.3
2.2 FL = (1,2,3,4,8] 1 100 $5.9
Fp = {1.5,2.5,3.5,4.5,5.5] 100 99.9
31 7 = [1,3,3] [y $9.0 33.5 |
Fg = [1.33,2.33,3.33] 99.5 98.8
F3 = [1.67,2.67,3.67] 100 99.6
3.2 Fy = [1,3,3] 8 98.0 96.3
Fgy = [1.2,3.2,8.3] 79.5 75.3
Fg = [1.4,2.4,3.4 98.5 98.1
Fy = [1.6,2.6,3.6 89.0 87.2
Fg = [1.8,2.8,3.8) 98.0 $7.8
3.3 = [1,4,71] 3 59.8 98.4
Fo = [1.5,4.5,7.5] 99.5 98.5
Fa = [2,5,8] 99.0 99.1
Fy = [2.5,5.5,8.5] 99.0 $7.2
Fs = [3,6,9] 100 $9.6

range of = 0.5Hz and only one component is shifted.
Pigure 1 shows the results. From this results, the
network has high frequency sensitivity.
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Figure 1: Frequency sensitivity ( Case-1.1)

V FREQUENCY ANALYSIS BY CON-
VENTIONAL METHODS
Fourier trainsform and filter analysis are very pop-
ular in frequency domain analysis. Multi-frequency
signal classification using these two methods are cur-
ried out and compared with neural networks.

5.1 Euclidean Distance Analysis

Similarity between the training and untraining sig-
nals can be evaluated using Euclidean distance in
some sense. It is defined by

N
Dpgm,m') = { %= 3 (Xrpm(n) — Xopm ()}

n=1
9)
In this section, classification based on this distance
is investigated. The Euclidean distances between



Xypm(n) and all other training signals are calcu-
lated. If the training signal, having the minimum
Euclidean distance, is included in X7p, then Xpm(n)
is classified into the pth group.

In Case-1.1 and 1.2, accuracy is 98 % and 61.5 %,
respectively. Thus, the Euclidean distance method
is impractical to distinguish the frequencies located
close each other, such as Case-1.2.

’ 5.2 Fourier Transform Analysis

Fourier transform of a discrete-time signal Xy, is

given by’ N1

n=0

(10)

Classification is carried out as follows:
Let |Gpm(e?¥T)| be Apm(f) for convenience.

Rule 1:  If Apm(fpi)> Apm(fqi) for all g ( # p)
and i = 1 ~ R, then X ,(n) is classified into
the pth group.

Rule 2: If Apm(fpi) > Apm(fgi) at more than half
ofi=1n~ Rfor all q, then X, _(n) is classified
into the pth group.

For all cases, classification rates using Rule 1 are
not high. At the best case, that is Case—3.3, accuracy
rate is less than 60 %. By Rule 2, accuracy rate can
be improved little, but they are still low rate.

In case of limited number of samples and obser-
vation interval as like Case-1.2, 2.1, 3.1 and 3.2,
Fourier transform classify the signals with very low
accuracy compare with neural networks. Ability of
Fourier transform is further investgated by increas-
ing the number of samples. This method requires
about 60 samples and 100 samples for Case-1.1 and
1.2, respectively, in order to achieve the same resolu-
tion as the neural networks. Furthermore, it requires
complex coefficients as shown in Eq.(10).

5.3 Filter Analysis

Frequency component extraction is also possi-
ble using digital filters with real coefficients. This
method use same number of filters as groups. Each
filters need to extract only the group frequency com-
ponents, so very high-Q filters are required. In this
simulation, very long impulse response having 4000
samples was used. Accuracy rate is 100 % for all
cases. However, this method requires a huge number
of computations compared with the neural network.

In Case-1.1, 1.2 and 2.2, training was converged
with one hidden unit. Compare these two based on
the calculation, it is same as that the filter can dis-
tinguish the signals into a group with just one output
sample. From investigation, it was impossible.
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Figure 2: Sample number and accuracy of Fourier
transform

VI ROBUSTNESS FOR RANDOM NOISE

Another interesting point of neural network perfor-
mances is robustness for random noise, that is uncor-
related interference.

It can be expected that the neural network can
be insensitive after training using a large number of
signals including uncorrelated interference. Case-1.1
is used for this investigation. Random noise is added
to both the training and the untraining signals.

6.1 Training signals with.and without Noise

The multi-frequency signals with and without
noise are used for training the neural network. The
number of samples in X7pm(n), N is 10, and the num-
ber of training signals, M is 200 for each group. A
single hidden unit is used. After training, untraining
signals with random noise are applied, and classifica-
tion rates are evaluated. Random noise is uniformly
distributed in the range 0.1 or 0.5. The results are
shown in Table 2. Signal(A) and (B) indicate the
training signals without and with random noise, re-
spectively. From these results, noisy training signals
are useful to achieve robustness. Also, performance
is highly related to the noise level.

Table 2: Classification rates using training signals
without(A) and with(B) random noise

Noise Amplitude | (A) (B)
+0.1 95.0 % | 98.0 %
+0.5 71.0 % | 85.4 %

6.2 Effects of Increasing Training Samples

Random numbers are uncorrelated to each other.
However, this can be held for a large number of
samples. In order to guarantee uncorrelation among
noise samples, the number of samples of Xzpm(n),
N, or the number of training signals, M, is increased.



Robustness for noisy patterns is investigated in the
same way as in 6.1. Two combinations, that is
(N=20, M=200) and (N=10,M=400) are evaluated.
Data with underline indicate increased information.
Table 3 shows simulation results in both cases. Clas-
sification rates can be greatly increased. Large N
can increase uncorrelation among noise samples, at
the same time, signal information. On the contrary,
large M can only increase uncorrelation among noise
samples. Signal information is not increased.

Connection weights from the input layer to the
single hidden unit are shown in Figure 2. They are
obtained by using training signals without(a) and
with(b) noise. By adding random noise, connection
weight distribution is modified in order to cancel
noise effects, while maintaining classification capa-
bility.

From these results, it can be concluded that the
multilayer neural network inherently hold capability
of removing effects of uncorrelated interference. Fur-
thermore, robustness to noise depends on a signal to
noise ratio, and independence among the noise sam-
ples.

Table 3: Classification rates using N=20 or M=400

methods, including FEuclidean distance, Fourier
transform and filtering methods, the multilayer neu-
ral networks are superior to them in the following
points. First, the neural network can resolve the
multi-frequency signals with very high accuracy us-
ing limited information. Second, computational re-
quirements are very small. Robustness for random
noise can be obtained by additive training using
noisy signals. The network is modified so as to sup-
press noise effects, while precisely extracts frequency
components.
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