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ABSTRACT
Authors have proposed an asymmetrical associative neural network (NN) using
(-variable hysteresis threshold and its learning and association algorithms. It
can drastically improve noise performance, that is insensitivity to noise. In
this paper, memory capacity bound and threshold optimization in this associa-
tive NN are further discussed. Binary random patterns are considered. First,
relation between the number of patterns and the number of iterations is
investigated. The latter gradually increases until some number of patterns.
After that, it suddenly increases. This is a very peculiar phenomenon. This
turning point gives the memory capacity bound, that is about 1.56N, where N is
ithe number of units. Next, threshold optimization is discussed. Relation be-
tween threshold and noise performance, and effects of connection weight
idistribution on noise performance are theoretically discussed. Based on these
results, a ratio of step-size and the threshold is optimized to be 0.5/(Ne-1),
where Np is the number of units on the pattern. Numerically statistical
simulation demonstrates efficiency of the proposed methods.
I INTRODUCTION

: -An associative memory is one of useful applications of artificial neural net-
works (NNs). Connection welghts are adjusted so that the equilibrium states
‘éxpress the patterns to be memorized. Conventional methods include
:auto-correlation methods and orthogonal methods [1]-[6]. These methods,
however, assume symmetrical weights, and are effective only for lineally inde-
pendent patterns or orthogonal patterns. Therefore, a memory capacity and
lnoise performance, that is insensitivity to noise, are strictly limited.
i Authors have proposed an asymmetrical associative neural network using
|variable hysteresis threshold and its learning and assoclation algorithms
{{7].[8]. It can drastically improve noise performance. In this paper, the memory
grcapacity bound and threshold optimization are further discussed. Binary ran-
.dom patterns are taken into account.
: I ASYMMETRICAL RECURRENT NEURAL NETWORK
. The asymmetrical recurrent NN proposed in [7],[8] is briefly described here.

I
i2.1 Network Structure
The network transition is formulated as follows:

N
s u,(n) =;2 wisvi(n), wii=0 (1)
vsy(n+l) = f(u,;(n)) = ( 1, uy(n)=T(n) (2a)
vs(n), l us(n) | <T(n) (2b)
0, u;(n)<-T(n) (2¢)
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u(n) and v,(n) are the input and output of the ith unit, respectively. wi, isa
connection weight from the ith unit to the jth unit. T(n) is threshold at n.
2.2 Connection Weight Learning

Initial guess of the weights are set to zero. The network state is set to be
one of the pattern P(m). The unit input is calculated by Eq.(1), using the ith
element of P(m), denoted p:(m), as vi(n). The weights are updated as follows:

us{n) = E‘ wis(n)p(m) (3)
wis(n+l) = wyy(n) + 7 (n)S s(n)p(m) (4)
6 3(n) = py(m)S[T-us(n)] + (p:(m)~-1)S[u,(n)+T] (5)
S[x]=1for x>0, and =0 for x=<0 (8)

n (n) Is step-size. In order to achieve both fast and stable convergence, 75 (n)
is determined to be large value at the beginning, and is gradually decreased..?
All weights are simultaneously updated taking all patterns into account. This'
process is counted as one iteration. i
2.3 Association from Incomplete Patterns Tt

After the training completed, all unit inputs satisfy i

If pi(m) =1, then u((n)=T . (7a)

If pi(m) =0, then u(n)=-T (7b) i
By adding noise, these conditions may be destroyed. Therefore, based on:a
noisy pattern, it is difficult to estimate the correct state of each unit.
However, if the unit input satisfies ! u,(n) | >>T, then the state of this unit can
be expected to be 1 or 0 with high probability. In the early stage, it is very
important to update the correct units only. Therefore, T(n) is initially set:to
large, and is gradually decreased toward T used in the training. iz

I MEMORY CAPACITY BOUND FOR RANDOM PATTERNS

The memory capacity is highly dependent on correlation among the patterns.
Combinations of patterns, which cannot be simultaneously memorized, have been
discussed [1,[]. In this paper, random patterns are taken into account. Half
units, takes 1. The memory capacity is investigated based on relation between
the number of patterns and the number of training iterations. k3!

Figure 1 shows the simulation 6000 . . . i1

results. The number of units N is 64. T=30 “oli il
The threshold T is chosen to be 10, 5000 r 1
20 and 30. The result using T=20 is 13V
shown here. The other thresholds . 9% [ -
provide the same results. The2 55, | R
number of iterations gradually in—g )
creases up to 80 patterns. After 2000

that, it suddenly increases. This is :

a very peculiar phenomenon. In the 1000 } : e
simulation, the training converges 0 ) L. o ]
for 100 patterns, with 7619 0 20 40 60 30 100.3‘
iterations. The number of the Number of pattems 1
patterns could be increased a little Fig.1 Relation between the number of |
more. However, from the very sharp iterations and the number of
slope in Fig.1, it is almost limited patterns to be memorized.
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.near by 100 patterns.

Thus, the memory capacity is about 100/64= 1.56 times as large as N. This bound
{s independent on the threshold.

IV HYSTERESIS THRESHOLD OPTIMIZATION

4.1 Threshold and Noise Performance

- If connection weights are increased in proportional to the threshold, then
:.the noise performance Is not improved. Because the error transfer gain is also
increased. Suppose the training converges using the threshold T, and the
weights w,, are obtained, which satisfy

un) = T wiypi(m) (8)
[ un) | 2T (9)
Noise margin = | uyn) | - T (10)

For the scaled threshold a T, a w;, could be one solution. The noise margin
is also scaled by «a. However, at the same time, the error transfer gain is
scaled by a, then noise performance is not improved any more.

4.2 Variance of Connection Weights and Noise Performance

Solutions for the connection weights are not limited to only one set. Noise
performance of the NN, using each solution, can be evaluated based on the
distribution of the weights, which is defined as follows:

l N
Mass = 'N—‘ | wisl (11)
wo1=)
Wiy = | Wiy | Maps (12)
l N N
Var(wi;l =<=— £ T (w,y; - wg)® (13)
Nw 1=1 51—

Nw is the number of the weights, and wp is mean of w,;. Since large weights mean
high transfer gains, noise performance is inversely proportional to Var{w,,].
Therefore, the threshold T should be optimized by minimizing the variance.
4.3 Ratio of Step-size and Threshold
The variance Var{w,;] is highly dependent on a ratio of » (n) and T.
r(n) = n(n)/T (14)

In the training process, if the input does not satisfy Eq.(7), then the weights

come from the other units on the pattern are increased by 7 {n). Thus, letting
the number of the units on the pattern be Np, the unit input is increased by 75
(n)(Np-1). If this change is large compared with T, then the input easily exceeds
T. This over-adjusting causes a large variance. Therefore, the condition

required for r(n) becomes as follows: 06 r3granemy ; . - —

7 (n)(Ne-1) < T, (15) o5t | ]

r(n) = n(n)/T < 1/(Np-1) (16) .

4.4 Simulation Results 20-“ o 1
In order to justify the above 503 F |

discussions, simulation was carried °~ '0.“

out. 5 (n) is chosen to 0.5. r(n) is 02 r el : |

controlled by changing T. The fol- 0.1t e vt

lowing variance is evaluated. o : . ) . B ." -

rwis(n) = wy;(n)/wis(n-1) (17 0 10 20 30 40 SO 60 70

1 N N T
Var[rW!J]:‘WE, ng(rw”(n)_ro)z (18) Fig.2 Relation between the varfance

defined by Eq.(18) and threshold T.



ro is mean of rw;(n). For large r(n), Varlrw;s;] is also large. It can be
decreased as r(n) decreases. After r(n) reaches to some value, Var[rw:;] will
saturate. This means the obtained weights are scaled versions of the previous.

Figure 2 shows simulation results using 50 patterns. From the starting point
to T=30, that is r(n)=0.0167, the variance can decrease. Therefore, r(n) is not
optimum in this interval. After this point, the variance is almost saturated.
Therefore, the obtained weights are scaled versions of the weights obtained at
the turning point r(n)=0.0167. Noise performance is not improved any more.

Although a smaller r(n) than 0.0167 can guarantee a little smaller variance,
it requires a large number of computations. Taking both noise performance and
computational load into account, the turning point gives the best selection.

In this simulation, Np=32, then change of the unit input at one iteration is »
(n)(N-1)=15.5 for T=30. Actually, the change is smaller than 15.5 due to inter-
ference by the other patterns. This relation was held for the different number
of patterns. Therefore, the following condition on the step-size » (n) and the

-~ threshold T can be obtained.

7 (n){(Ne-1) 5 0.5T or 7 (n)/T=0.5/(Np-1) (19)
100

V NOISE SENSITIVITY AND 7 (n)/T )

Noise performance is investigated , noise 5%
based on the ratio n (n)/T.
Conditions of the simulation are the
same as in Sec. V. Random noise is
added. The state of 5~ 20% units,

o]
o
T
+
.
.
.
.

association rate(%)
(o))
(=]

. noxse 10%
randomly selected, are changed. 40 r T o o 4
Figure 3 shows the simulation .

results. As expected in the previous 20 °

section, association rates Increase P P I 23;::;3::
until about T=30, that is r(n)=0.0167. 08 ——x x x x v x ¥ x

After that', they tend to saturate. Fig.g Refgtioiobet?v?een4g.ssosc?iati6<(>)n er(t):e;r
Thus, noise performance also for noisy patterns and threshold T.
saturate after this turning point. The number of patterns is 50.

VI CONCLUSIONS
The memory capacity bound for random patterns and the threshold optlmlza-
tion method have been proposed for the asymmetrical recurrent NN with
variable hysteresis threshold. Efficiency of the proposed has been justified
through numerically statistical simulation.
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