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Abstract- Time series prediction is a very important tech-
nology in a wide variety of field. The actual time series con-
tains both linear and nonlinear properties. The amplitude
of the time series to be predicted is usually continuous value.
For this reason, we combine nonlinear and linear predictors
in a cascade form. In order to estimate the minimum size of
the proposed predictor, we propose a nonlinearity analysis
for the time series of interest.Computer simulations using
the sunspot data have demonstrated the efficiency  of the
proposed predictor and the nonlinearity analysis.

1. Introduction

It is well known that linear filters are insufficient to
deal with nonlinear time series processing. On the other
hand neural networks are useful for nonlinear adaptive sig-
nal processing. They have many important properties such
as nonlinearity built into their structures, input-output
mapping capability, and adaptivity. So, neural networks
have been applied successfully in a variety of signal and
information processing fields. One of these fields is the
nonlinear time series prediction [1],[2],[3],[4],  and others.
Neural networks were first applied to time series predic-
tion by Lapedes and Farber (1987) [l].

In practice, many of the time series include both non-
linear and linear properties. Furthermore, the amplitude
of the time series is usually continuous. Therefore, it is
useful to use a combined structure of linear and nonlinear
models to deal with such signals. A combined structure
was proposed in [2] and [6] for different tasks.

In this paper, we propose a cascade form predictor,
which consists of the following sub-predictors [8],[9],[10]:
(1) A nonlinear sub-predictor (NSP), which consists of a
mu1 ti-layer (ML) neural network with a nonlinear hidden
layer and a linear output neuron.
(2) A linear sub-predictor (LSP), which is a conventional
finite-impulse-response (FIR) filter.

A nonlinearity analysis method for the time series is
proposed in order to estimate the minimum effective com-
bination of the input samples and the hidden neurons. Re-
lation between the network size and the learning perfor-
mance will be discussed. Computer simulation using the
sunspot data will be demonstrated.

2. A Cascade Structure Model

2.1 Proposed network structure

The actual time series contains both linear and non-
linear properties and its amplitude is usually continuous
value. For this reason, we combine nonlinear and linear
predictors in a cascade form. Figure 1 (a) shows the pro-
,posed predictor structure. This predictor model is based
on a one-step prediction. However, it can be extended to
more general prediction.

The nonlinear prediction problem is reduced to a pat-
tern classification using the NSP and linear compensation
using LSP. A set of the past samples ~(n - 1), ..,z(n - N)
is transformed into the output, which is the prediction of
the next coming sample x(n). So, as a first stage of the
predictor, we employ a multi-layer neural network which is
good for this kind of pattern mapping. It is called a Non-
linear Sub-Predictor(NSP) in this paper. It consists,of a
sigmoidal hidden layer and a single linear output neuron.
The NSP is trained by the supervised learning algorithm
using the sample x(n) to be predicted as the target. This
means the NSP itself is trained as a single predictor.

However, it is rather difficult to generate the continuous
amplitude and to predict linear property. So, we employ a
linear predictor after the NSP in order to compensate for
the linear relation between the input samples and the tar-
get. A finite impulse response (FIR) filter is used for this
purpose, which will be called a Linear Sub-Predictor(LSP).
The LSP is trained by using x(n) as a target. Thus, the
same target is used for both the NSP and the LSP. Figure 1
(b) shows how the LSP works. One of the LSP coefficients
(WO = 1) passes the NSP output to the overall output of
the predictor, and the other coefficients compensate for the
remaining (linear) part of the input time series.

In order to confirm the efficiency of the proposed struc-
ture, the modified models, described in Sec.4, are used for
comparison in computer simulation.

2.2 Network operation and learning algorithm

A set of past N samples of the input signal , x(n -
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Figure 1. (a) Structure of the proposed predictor,

(b) The same detailed model.

ron to the jth hidden neuron and t’&(n) is its bias. The
activation function, fh used in the hidden layer is a sig-
moid function of the form:

T h e output 1
Put value at

fh(x) =
1

l+ exp(---x) (3)

.ayer contains
the nth time

only one linear neuron.
can b e expressed by:

Its out-

u(n> = C wjYj(n) + e(n), (4).a

YW = f & ( n ) )  =  u(n) (5)

wj is the connection weight from the jth hidden neuron to
the output neuron.
The error of the output unit at the nth time is

Qvsp(n) = d(n) - yl(n) (6)

where d(n) is the desired response at the nth time. The
instantaneous squared error of the network is

The cost function which has been used as the performance

1) (,x n-2), . ..x(n- N) are applied to the NSP and the cur- measure is the sum of the squared error over an epoch. I t

rent sample&n) is used as the desired response for both can be written as follows:

the NSP and the LSP. N is the estimated input dimension.
The reason why we use x(n) as a target for the NSP is ex-
plained as follows: First, it is difficult to obtain the target

&vSP = &(n), (8)
n=l

only for the nonlinear prediction. It may require separa-
tion of nonlinear and linear properties of the time series.. where IM is the total number of samples in one epoch.

Second, since the NSP has a linear output unit, the linear
prediction is also possible to some extent. Thus, the N S P
output can approach the final target x(n) . 3. Nonlinearity Analysis of Time Series

The LSP is an FIR filter of K-number of taps. The
weights of both sub-predictors are adjusted on a pattern- In order to estimate the minimum size of the pro-

by-pattern basis. The NSP trained by the conventional posed predictor, we analyze nonlinearity of the time series

Back-Propa.gation algorithm, and the LSP is trained by Of interest. The prediction is equal to mapping a set of

the LMS algorithm. s the past samples to the next sample to be predicted. The
multi-layer neural network is good for this kind of pat-

2.3 System equations of NSP tern mapping. Still, difficult mapping can exist, which in-
cludes the following: Several sets of very similar patterns

The output of the jth hidden neuron, yj(n) at the nth are mapped into very different samples. The degree of the

time can be expressed by difficulty of the mapping is closely related to the nonlin-
earity. The necessary number of the past samples used for

Uj(?l) = fl: WjiX(?l - i) + Bj(n)
prediction, that is the number of the inputs of the NSP,

(1) is determined by this nonlinearity analysis. The difficult
i=l mapping requires a large number of the past samples. Fur-

Yj(n> = fh(Uj(n)), j = 1,2, . ..L. (2)
thermore, the number of taps of the LSP is determined by
the linearity remained at the NSP output.

where wj; is the connection weight from the ith input neu- In this section, we introduce a measure to obtain the
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effective minimum combination of the input samples and
the hidden neurons which enables the network to achieve
its convergence faster than the other networks.

3.1 Input-output mapping
c?se, 1: Impossible mapping

A set df the’N samples  X,
coming sample x(n) as

is mapped onto the next

X, + x(n), n = 1,2 ,..., M (9)

where M is the total number of mappings in one epoch,
and

X, = [x(n - l),x(n - Z), . . ..x(n - N)] (10)

We consider two different mappings as

Xi 3 x( i ) (11)

Xj * x(j) (12)

If the above two different mappings satisfy the following
rela.tion:

xi = Xj x(i) # x(j)- (13)

then, they
network at

can
the same time. If such mappings are exist, the

not be realized by the multi-layer neural

network will fail to converge’at all. This problem can be
overcome by increasing the number of the input samples
N.
case 2: Difficult mapping

In this case the two patterns are similar to
to some extent, and their targets are different
other. It can be expressed as:

xi E Xj, XC;>  # x(j)

each other
from each

(14)

Although this mapping is basically possible, it is still diffi-
cult mapping. Although the convergence may be possible,
it may often take a very long time. The key question is
how to evaluate the degree of this difficulty. We introduce
a nonlinearity analysis method for this purpose.

In order to measure the similarity among the sets of
the past samples, we employ the Euclidean distance among
them as:

dij = IlXi - Xjl[, i#j (15)
Similar sets are selected based on dij  using some threshold
I. If the Euclidean distance between Xi and Xj satisfies

dij < I- (16)

then they are selected as a similar pair. Threshold value, I
is determined by

I  =  CIA, (17)

A process of selecting sets of Xi is as follows: Let the
number of Xi sets to be M, that is,{X1,Xz, . . . . ..X.}. One
of these sets, Xk is selected and find the other Xi, i # !C
which satisfies

dki 5 I (19)

Xi is selected as the similar member of Xk. A set of these
members is denoted by ok. Thus,

X i  f ak, dki 5 I (20)

x #ai k> dki >  I (21)

l<i<Mandi#k
ok is obt&ed for all data X1 - XM. .:

Next ,  the difference between x(i) and x(j), that is,
IIW - 4j>lL is investigated, where both Xi and Xj are
included in the same &. Let xk(i) be the corresponding
output for the input sample set Xi-E &. The variance of
xk(i) is used to estimate the difference among xk(i).

where Qk is the number of elements of &. Furthermore, an
average of ai over all & is used to estimate the difficulty
of mapping, that is, the degree of nonlinearity of the entire
time series.

l M

For convenience, 2 will be normalized by the signal power.

3.2 Estimation of input dimension of NSP

A large 7 means the similar Xi is mapped onto the
different x(i), the mapping of this time series is difficult, in
other words nonlinearity is high. On the other hand, if 7
is small, the similar Xi are mapped onto the similar x(i),
then the mapping is easy, and the nonlinearity is low.

Although 7 is large for some number of the past sam-
ples N, used in prediction, 7 can be decreased by increas-
ing N. Thus, the necessary number of the past samples,
that is the input samples of the NSP is determined by 7.
The threshold I should be appropriately determined.

There is another nonlinearity. Xi and Xj, whose dis-
tance IlXi - Xj II is large, are mapped onto the similar sam-
‘ples x(i) and x(j), that is 11x(i)  - x( j)ll ii small. This prob-
lem belongs to pattern classification, which is easy problem



Table 1. Average Variance for Sunspot Example.
7 is normalized by the signal power, 0.1032

2nd LSP

N . 8 9 10 12I
I = 0.5A, cr2 0.00019 0 0 0
I = O.BA, u2 0.01356 0.00029 0.00009 0

1 I =  A , 7 1 0.02229 1 0.00469 1 0.00062 1 0 1

Figure 2. Sandwich Structure: The same size
as Fig&  but the LSP is split into two parts

size is chosen to have a very close number of free parame-
t&s as that of Figs.1 and 2.

and NSP is sandwiched between them
3. Computer Simulation

for the multi-layer neural networks under the condition of 5.1 Nonlinear time series . , .

a small 7.

4. Modified Models for Comparison

Computer simulations have been done for a one-step
ahead prediction task for sunspot time series.

Therefore, some modifications are considered here.

In Sec.2, we have proposed the cascade form predic-
tor structure. Some questions may arise about the order
of the combination of the linear and nonlinear processings.

The yearly sunspot time series is used as a benchmark
for many years by many researchers. We have used the
record of sunspot data from 1700 to 1920 for learning pro-
cess and the data from 1921 to 1979 for testing process.
The same data was used in [I] and [5].

In Fig.2, the LSP part is divided into two parts and
the NSP is sandwiched between them.. The same number
of free parameters as in Fig.1 are used. It will be called
a sandwich model. We also consider that the first two
parts of sandwich model represent another separate model
in which the LSP and NSP are arranged in reverse order
compared with the proposed predictor in Fig.1. We call
this model as a reverse order model. The necessity of using
this structure is to answer the question of which is better
to use LSP or NSP as the first stage. Later, in Sec. 5, the
results of the sandwich model as well as the reverse order
model will be compared to that of the proposed model.

In the proposed model, we do not use the LSP in front
of the NSP, because the LSP does not work well for non-
linear time series. This point will be investigated through
computer simulation.

Figure 3 shows a structure of a multi-layer neural net-
work with direct linear connections from the input layer to
the output [3, p.281. Nonlinear hidden neurons and a linear
output neuron are used. ’ It has been stated that: “...this
architecture can extract the linearly predictable part early
in the learning process and free up the nonlinear resources
to be employed where they are really needed”[3] .

We have chosen this architecture to compare its sim-
ulation results with our proposed structure. Because, this
network also try to predict both nonlinear and linear prop-

5.2 Nonlinearity analysis

Nonlinearity of the time series are analyzed based on
the average variance 7 using I=A,, O.BA,  and 0.5&. I,
A, and 7 are defined by Eqs.(l7), (18), and (24) respec-
tively. The values of.1 are determined by experience. At
the present, we do not have a.general rule how to determine
I. However, another important point is the universality of
the value of I. That is, is it possible to use the same thresh-
old for any nonlinear time series?.

Table 1 shows the relations among the average vari-
ance 02, the threshold I and the number of the past sam-
ples N, that is the input samples of the NSP. By increasing
the number of the input samples, CTZ can be decreased. In
the last  column, a--2 -O means that  al l  !& are empty or.
{Xki 1 Xi E &-} take the same value.

5.3 Network size estimation

Network size will be estimated based on the nonlin-
earity analysis shown in Table 1 [8,9,10].  For this purpose,
we must know relations among a pair of I and 7 , the con-
vergence speed and the prediction error. However, these
relations are complicated. So, we first analyze their rela-
tions, and then estimate the appropriate threshold I and
the variance 7 for both the convergence speed and the

erties using the different structure, by mixing the linear and prediction error.
nonlinear processings in the same network. The network In Table 1, if we select I=0.5A,, then the number of the
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Table 2.Average  variance for sunspot example:
T-D means training data(221  samples), NW
means the output of NSP(221  samples), and

(cl(n)) is the error signal at NSP output
2over one epoch (221 samples).tr  values

are normalized by their related power.I
N 2 3 4 5 12
I = 0.5A,
(T.D), 7 0.00044 0.00026 0.00016 0.00009 0
I = 0.5A,

2(Yl)  ,g 0.00052 0.00032 0.00023 0.00006 0
* I = 0.5A,

(WSP),  7 0.00150 0 0 0 0
I = O.BA,
(T.D), 3 0.00069 0.00042 0.00033 0.00022 0
I = O.BA,
W) *fl -5 0.00073 0.00049 0.00036 0.00023 0,

1 I = O.BA,  1 I I I I

CoeHidenls of CSP ef\w  training Process

0.4 t . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..,.......; ; . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . .
:

1 2 3 4

Figure 4.

5 6
Number of coeffidenls

Coefficients of LSP.

(WSP), 2 0.0023 0.0002 0 0 0
I = A, a This means the nonlinearity of the input signal can be pre-
(T.D), 2 0.00082 0.00056 0.00041 0.00031 0 dieted, and the r e m a i n i g  p a r t  m a i n l y  p r o p e r t y .has linear

I = A,
s Figure 4 shows the values of the LSP co-

(yl) 10 2 efficients after0.00086 0.0006 0.00047 0.00032 0 training,W=(1.0266,0.0079,-0.0215,0.0772,-

I = A,
0.0651,0.0502,0.0479,-0.0885,0.0951,-0.0162).  Th i s  r e su l t

(WSP),  7

supports the theoretical discussion in Sec. 2.1.
0.0026 0.0005 0 0 0 I

’ 5.4 Comparison with other models

input samples N=9 is enough to make 2 zero. However, Testing data is the part of the time series which was
performance of the NSP is not good. So, we use I=O.BA, not used in the learning phase. Although the LSP of large
or I=A,. Thus, the input dimension will be N=lZ. number of taps can decrease the error in the learning phase,

The number of the hidden neurons is determined based the error for the testing data is large. This means the learn-
on try-and-error. We also want to compare with the other ing is over fitting to the training data. From the viewpoint
me thods  [4], [3], [l]. T he number of the hidden neurons is of generalization and network size, the LSP with 10 taps is
determined from this point. The NSP size will be 12-8-l. better than others for proposed model (See Table 3). For

Furthermore, we must estimate the order of the LSP. reverse order model the LSP with 6 taps is found to be
For linear prediction, the conventional methods can be also better- than the others.
applied. However, if we separate a training and an actual The results of different models in both training and test-
prediction phases, a most important point is generaliza- ing phases, with the specified size are listed in Table 4. The
tion. Even though the error in the training phase can be network size of the proposed and reverse order models are
well decreased, if the prediction error for the testing data is chosen to give the best performance in generalization. The
drastically increased, this means the predictor over fits only . size of the sandwich model is taken to be equivalent to that
to the training data. Thus, the order of the LSP should of the proposed model. The ML-WDC size is slightly larger
be determined taking the generalization into account. This than the other models. The prediction error is measured
point is also investigated through computer simulation. at the output of each model.

Table 2 demonstrates the analysis of the output of Figure 5 shows the output waveforms of the different
N S P ,  yl(n) in Eq.(5) and i ts  related error,  eNsp(n) in models in the testing phase where the other part of the
Eq.(G)  from the point of view of the above nonlinearity sunspot data from 1921 to 1979 are use& The network
analysis method. In this table we see that the nonlinear- structures are specified as that of Table 4.
ity of NSP output is close to the nonlinearity of the input From these simulation results, in the ML-WDC model,
signal, training data (T.D). On the other hand, the non- the sandwich model, and the reverse order model, the error
linearity of the difference between them are well reduced. is large compared with that of the proposed model.
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Table 3 T h e  norma l i z ed  r oo t  mean  squared  e r r o r s
(NRMSE) for Proposed model at different LSP taps.
( The * points to better results at specified L S P  t a p ) .

1 LSP taps 1 Learning Phase Testing Phase
30 0.1402 0.1731
12 0.1482 0.1696

t 10*
I I
I 0 . 1493 1 0 .1684 1

8 0.1503 0.1722
6 0.1503 0.1724

10 1 0 . 1623 1 0 .2013 I

Table 4 Comparison of NRMSE
values among different models.

Model Name
MGWDC mode l
(12-8-1)

Learning Phase Testing Phase
$

0.1747 0.2617 .._

I Sandwich model
LSP(  5)+NSP(  12-8-1) I I I
+LSP(5) 0.1854 0.1980
The reverse order model
LSP(6)+NSP(12-8-l) 0.1589 0.2014
Proposed model
NSP(12-8-l)+LSP(lO) 0.1493 0 . 1 6 8 4  *

6. Conclusions

A nonlinear predictor connecting the multi-layer neu-
ral network (NSP) and the FIR filter (LSP) in a cascade
form has been proposed. A nonlinearity analysis method
for the time series has been also proposed in order to
achieve the fast convergence and the small residual error
with the minimum network size. The proposed model has
demonstrated its superiority over the other compared mod-
els in both learning and testing phases. It has been also
confirmed that the number of taps in the LSP is sensitive
to generalization of the nonlinear prediction.
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