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Abstract- In this paper, a recurrent neural net-
work(  RNN) is applied to approximating one to N many
valued mappings. The RNN described in this paper has
a feedback loop from an output to an input in addition
to the conventional multi layer neural network(MLNN).
The feedback loop causes dynamic output properties.
The convergence property in these properties can be
used for this approximating problem.

In order to avoid conflict. by the overlapped target
data yllcs to the same input ~1, the input data set (.w,  ~JK)
and the target data y* are presented to the network in
learning phase. By this learning, the network function
j(x, z) which satisfies y* = j(m,  y*)  is formed. In recall-
ing phase, the solutions y of y = f( .

T$
y) are de

the feedback dynamics of RNN. different
tected by
solutions

for the same input x can be gained by changing the
initial output value of y.

It have been presented in our previous paper that
the RNN can approximate many valued continuous
mappings by introducing the differential condition to
learning. However, if the mapping has discontinuity or
changes of value number, it sometimes shows undesir-
able behavior. In this paper, the integral condition is
proposed in order to prevent spurious convergence and
to spread the attractive regions to the approximating
points.

K e y w o r d s - Recurrent Neural Network, Many Valued
Mapping, Convergence Property.

I. INTRODUCTION

The human beings can perceive different things from
the same information. It is known to be caused by the
feedback from knowledge. Rumelhart et al applied a
Hopfield  type of a neural network to the recognition
problem of Necker  cube[l].  This network is a type of
recurrent neural networks(  R,NN).

In this paper, it is proposed how to apply a R.NN  to
approximating one to N many valued mappings. It is
well known as universal approximation theory [2] that8
a Multi-layer neural network(  MLNN) can approximate
single valued continuous mappings. However, since a#
feed-foward network such as a MLNN can not take
different values for the same input, it is difficult to
apply it to many valued mapping problems.

Whereas, a. RNN has a convergence property. It can
converge to different points even for the same input.
This property can be a.pplied  to approximating a many
valued mapping. In our previous paper[3],  it ha#ve been
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p r o p o s e d  tha.t a0 R.NN  c.an a.pproximate  mmy va.luecl
continuous ma.ppings which does not ha.ve c.ha.nges  of
value number. However, it have been also indic.a.ted
that it shows chaotic behavior or spurious convergence
in the case of a many valued mapping with changes of,
va.lue  number. In general, it is difficult to control the
c.onvergence  property of a0 RNN.

In this paper, the integral condition is proposed in
order to prevent such undesirable beha.vior. By intro-
ducing this condition to learning, a RN N ca.n be ex-
tended to approximating discontinuous mappings or
many valued mappings with changes of value number.

II .  L E A R N I N G  A N D  R E C A L L I N G  M E T H O D

The learning method of many valued mappings ha.ve
already been proposed[3][4]. In this section, the main
learning method and recalling method are described.

Let’s consider the learning of the data sets (~t’f, y*)
in which different output y*s may be given for the same
input z*. Since a conventional feed-forward type of
neural network takes aI only single output for the same
input, it can not learn such the data sets. Then, we
propose the learning method which lets a MLNN to
learn the following da&a,  relations.

input vector (23, y*> + output y * (1)

In this learning, the output y* is always different for
the different y* in the input vector even though the c1:*
in the input vector is the same. Then, the rela,tion of
Eq.(l) can be learned by a. conventional MLNN. In
this case, the leazned output1  function of the network
sa.tisfies  the following equa.tion.

y* = f(x*, y*) .
(2)

where f (x, z) is the output function of the MLNN with
the input x and z.

III recalling, the network output y is feed-backed tlo
the input z as shown in Fig.( 1). A neural network
which has this feedback opera.tion  is called a. R.NN.
This operation is expressed by the following equation.

y(n) = f (a:, y(n - 1)) .11 - DC, (1)*
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z=y(n- 1) x

Fig. 1. A RNN model for recalling

This feedback operation is repeated until the output
y(n) does not Chlge. This unchanged state means
that the network have been converged. This type of
RNN usually takes many convergent sta.tes.

B. Diflerentiul  condition

If the network state of this R.NN  is a.t the point
which satisfies Eq.(2),  the state never change. This
point is called an equilibrium point. However, the net-
work state is not always guaranteed to converge to an
equilibrium point. In order to converge to an equilib-
rium point, the poi.nt must satisfy an asy,mptotic stable
condition. In this RNN, the asymptotic stable condi-
tion at the point (x*, y*) can be expressed as follows

(4)
This condition is called the differential condition in
this paper, since it uses a differential form.

C. Learning by the method of the steepest descent

The parameters of a MLNN, such as connection
weights and thresholds, sometimes can be adjusted by
the back propagation method. This learning method
minimizes the total square error between the network
output and the target dada. This back propa.ga.tion
method is principally based on the method of the
steepest descent.

The proposed learning method uses the method of
the steepest descent but it minimizes the integrated
total error Etotal of the network output1 a8nd  the differ-
ential condition. This total errors EtOtal is written as
follows, by using the output error Eout and the differ-
ential error Eai.f,f .

E t o t a l = Eout  -I- P & i f  f ( >5
. l

where p is a0 smaJ1  positive constant. Sinc.e  the differ-
entia.1 condition does not ha.ve  to be zero a.s shown in
Eq.(4),  the weight coeficient ,0 is used.

E,,21t = x{y * - J*(.,:*,  y*)}’

And the differential error is written as follows,

w

E ili*f .f = ID
~J’(a:*,  y*) 2

8s > ( )7

where C means  the sunima.tion of a.11 the given learii-
ing data..

By the method of the steepest desc.ent,  the network
parameters a,re  upda.ted  as follows,

where W(  72)jf) is the weight of the i-tlh neuron for the

j-th input in the L-th la.yer  ak the n-th  upda.te. O.iL ’ is
the threshold. 73 is the learning consta.nt  .

III. C ONTROL OF SPURIOUS CONVERGENCE

If the given data do not halve  discontinuity, a. RNN
c a n  a.ppioxima,te  them by the lea.rning m e t h o d  cle-
scribed in Section 2. However, in the case of approx-
imating a discontinuous mapping or a mapping with
value changes, the RNN sometimes c.onverges  to the
unlearned points, that is a. spurious convergence. Fig-
ure 2 shows the convergence points from the uniform
initial values y(0) by the RNN, which learns the points
77  *n by the learning method described in section 2. The
horizontal coordinate shows the input it’ and the ver-
tical coordinate shows the converged output0 y.

Figure 2.( a,)  shows the example of a. discontinuous
mapping. Many spurious convergence points appeared
near the :discontinuous pa.rts. Figure 2. (b) shows the
example of a. mapping with value c.ha.nges.  The spu-
rious  convergence points appea.red  along the prolon-
ga.tion of the center line. This results show that. t,h(:
lea.rning metJ~oc1  described in section 2 is not, etiicicr‘l1  t,
to control the network convergenc,e  for a.Pl)roxinla.tlillg
many valued  mappings.

A. Integral condition

In this section, the integral c.ondition is proposed iI1
order  to  enla.rge  the a.ttra.ctive  region to the lea.rnecl  ’
point and to c.ontrol  spurious c.onvergeuce.

Figure( 3) shows the distribution of discontlinuou~
niapping  da.ta. which are learned by the proposed wt.-
ci70  L-1; . The mesh shows tJie learned output1 function  for
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(a) Approximation of a discontinuous mapping
using Only differential condition.( /? =O.Ol)

I

@) Approximation of a many valued mapping
with changes of V&E number using only

differential condition.( ,8 =0.02)

Fig. 2. Spurious convergence by a R.NN

the input x - Z. In learning of Eq.( l), the input data
(x*, y*) is always a local graph in the x - z space as
shown in this figure. Then, the input, data, exist only
in the restricted partial space. Whereas, the a.ttrac-
tive property of the RNN is attributed to the network
output function for all input space.

The differential condition of Eq.(4)  mea,ns  the flat
form of the network function near the da.ta#  points in
Fig.(S). However, in this case, the flat form apIlea.rs
in the region far from the data. points. In order to
reduce spurious convergence, the output function in
the region far from the data points must be cha.nged.It
is difficult to control the output,  function in this part
only by local learning data.

Then, we propose the learning condition which sets
the network output to be y* also for all z exc,ept  y*.
The error function of this condition can be written by
the following equation.

E in.t  = c

s
e-k+

This condition is called the integral condition in this

In the equation (IO), the square factor mea.ns  the
error between the purpose output y* and the network
output f(x*,  z). The exponential factor means the
weight to attach the more importance to the nearer
z to y*. By the effect of this exponential factor: the
integral condition enlarges the attractive region to the
learned value y* nearer to an initial value z, even
though many y*s exist for the same Ic*:. The l>a~ra.ineter
c means the spread of the weight.

A RNN could learn the integral condition by the
method of steepest descent, if the integral error Ed,7.1.
could be included in the int,egrated total error Et,~CLl
as follows.

E t 0 t a 1 = &u t -I- ,d &if f -I-  3’ ~5.1,.  t.. (II)

where y is a. small constant,. As well as Ecl;.l.f  , Ei,, t
does not, have to be zero. Then, the weight factor is
used also for Ein,t  . However: by a.djusting  p a~1 7, the
convergence property delic.a.tely changes.

In general, the integral of Eq.(  10) cau not1 solve an-
alytically. However ,  it, ca.n be approxima.ted  by the
compositions for discrete _5,]  s.

paper, since it uses a. integral form.
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Fig. 4. Results for approsilnation  of a disco]

(L+, 2,) and the target data ‘y* are presented. Besides
the exponential term can be thought the weight factor
to this learning data..

Then, in this paper, the integral condition is consid-
ered to be given by an a.uxiliary data. weighted by the
exponential term and y.

IV.  S I M U L A T I O N

Figure 4 shows the approximation results for the
discontinuous line data, using the RNN trained by the
learning method in section 2 and the integral condition
in section 3. It shows the convergence points from the
uniform initial values y( 0) as the same as Fig.%.(a). By
including the integra.1 condition in leazning,  spurious
convergence points could be well reduced. Increasing
the weight factor y further, the a.pproximation of a#
discontinuous ma#pping  could be realized. Especially
the discontinuous parts could be well reproduced.

Figure 5 shows the approximation result for the
many valued mapping with changes of value number.
In this case, spurious convergence points could be also
reduced by using the integral condition. However, if
the weight factor p was strong, spurious convergence
points were left near the parts of value  number change.
Whereas, the weight factor y wa#s  stronger, the precise
of approximation became worse. Figure 5 shows the
best results of our simula.tions.  The a.djusting  of the.
weight factors p and y is very importa&  in the pro-
posed method but0  it is the future problem.

V. C ONCLUSION

Iii this paper, t h e  approxin~ation  inethod  of nia.iiy
valued mappings using a. recurrent neura.1  network is
introduced. And the integra.1  condition is proposed
to extend it to a.pproxima.ting  discontinuous ma.ppings
or many valued ma.ppings  with changes of value num-
ber. It is confirmed that  the integra.1  condition ca#n
well reduce spurious convergenc,e  of R.NN a& t1la.t  a

/3=0.02 y=0.5 0=0.25

Fig. 5. R.esults  for  appoxhation  of a n1an$  valued nlappiug
with changes of value nunher

recurrent neural network can be aapplied  to a,pproxima.-
tion problem of a. discontinuous ma.pping and a. ma.ny
valued mapping with changes of value number.

R E F E R E N C E S
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