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Abstract— In this paper, a recurrent neural net-
work( RNN) is applied to approximating one to N many
valued mappings. The RNN described in this paper has
a feedback loop from an output to an input in addition
to the conventional multi layer neural network(MLNN).
The feedback loop causes dynamic output properties.
The convergence property in these properties can be
used for this approximating problem.

In order to avoid conflict. by the overlapped target
data yxs to the same input zx, the input data set (xx*,yx*)
and the target data y* are presented to the network in
learning phase. By this learning, the network function
f(z, z) which satisfies yx= f(xx*,yx) is formed. In recall-
ing phase, the solutions y of y = f(z,y) are detected by
the feedback dynamics of RNN. The different solutions
for the same input z can be gained by changing the
initial output value of y.

It have been presented in our previous paper that
the RNN can approximate many valued continuous
mappings by introducing the differential condition to
learning. However, if the mapping has discontinuity or
changes of value number, it sometimes shows undesir-
able behavior. In this paper, the integral condition is
proposed in order to prevent spurious convergence and
to spread the attractive regions to the approximating
points.

Keywords- Recurrent Neural Network, Many Valued
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| . INTRODUCTION

The human beings can perceive different things from
the same information. It is known to be caused by the
feedback from knowledge. Rumelhart et a applied a
Hopfield type of a neural network to the recognition
problem of Necker cube[l]. This network is a type of
recurrent neural networks( RNN).

In this paper, it is proposed how to apply a RNN to
approximating one to N many valued mappings. It is
well known as universal approximation theory [2]that
a Multi-layer neural network( MLNN) can approximate
single valued continuous mappings. However, since a
feed-foward network such as a MLNN can not take
different values for the same input, it is difficult to
apply it to many valued mapping problems.

Whereas, a. RNN has a convergence property. It can
converge to different points even for the same input.
This property can be applied to approximating a many
valued mapping. In our previous paper[3],it have been
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proposed that a RNN can approximate many valued
continuous mappings which does not have changes of
value number. However, it have been aso indicated
that it shows chaotic behavior or spurious convergence
in the case of a many valued mapping with changes of
value number. In general, it is difficult to control the
convergence property of a RNN.

In this paper, the integra condition is proposed in
order to prevent such undesirable behavior. By intro-
ducing this condition to learning, a RN N can be ex-
tended to approximating discontinuous mappings or
many valued mappings with changes of value number.

The learning method of many valued mappings have
already been proposed[3]{4]. In this section, the main
learning method and recalling method are described.

Let's consider the learning of the data sets (zx*,y+*)
in which different output y+s may be given for the same
input . Since a conventional feed-forward type of
neural network takes a only single output for the same
input, it can not learn such the data sets. Then, we
propose the learning method which lets a MLNN to
learn the following data relations.

L EARNI NG AND RECALLING METHOD

(1)

In this learning, the output yx is dways different for
the different y* in the input vector even though the zx
in the input vector is the same. Then, the relation of
Eqg.(I) can be learned by a. conventional MLNN. In
this case, the learned output function of the network
satisfies the following equation.

input vector (z*,y*)— output y *

(2)

where f (z,z) is the output function of the MLNN with
the input z and =.

y* = f(z*, y¥)

A. Recalling by « RNN

In recaling, the network output y is feed-backed to
the input z as shown in Fig.( 1). A neural network
which has this feedback operation is caled a. R.NN.
This operation is expressed by the following equation.
(3)

yn) = f (z,y(n— 1) n—ox



z=y(n- 1) x

Fig. 1. A RNN model for recalling

This feedback operation is repeated until the output
y(n) does not change. This unchanged state means
that the network have been converged. This type of
RNN usualy takes many convergent states.

B. Differential condition

If the network state of this RNN is at the point
which satisfies Eq.(2), the state never change. This
point is called an equilibrium point. However, the net-
work state is not always guaranteed to converge to an
equilibrium point. Inorder to converge to an equilib-
rium point, the point must satisfy an asymptotic stable
condition. In this RNN, the asymptotic stable condi-
tion at the point (z*,y+) can be expressed as follows

O f(x*, y*)

25 <1 (4)
This condition is called the differential condition in
this paper, since it uses a differential form.

C. Learning by the method of the steepest descent

The parameters of a MLNN, such as connection
weights and thresholds, sometimes can be adjusted by
the back propagation method. This learning method
minimizes the total square error between the network
output and the target dada. This back propagation
method is principally based on the method of the
steepest descent.

The proposed learning method uses the method of
the steepest descent but it minimizes the integrated
total error Ey,:4; Of the network output and the differ-
ential condition. This total errors E;,:q; IS Written as
follows, by using the output error E,,; and the differ-
ential error Egfy .

(5)
where 8 isasmall positive constant. Since the differ-

ential condition does not have to be zero as shown in
Eq.(4), the weight coefficient 8 is used.

Etotal = Four+P&if, f
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Using the given data x* and y*, the output error is
written by the following equation.

Eow =Y _{y*— f(ex,y+))? (6)

And the differential error is written as follows,
A f(w*, yx*) i
Eaif = » {—5—— ( (7)

where 5~ means the summation of all the given learn-
ing data..

By the method of the steepest descent, the network
parameters areupdated as follows,

dE ota
w(n)(L) = w(n-— )(I’) 4—’—?)— (8)
dwu
L dE o al(" )
0(11,)2 ) = (Il) t;H(L) (9)

where w(n)EjL) is the weight of the i-th neuron for the
j-th input in the L-th layer at the n-th upda,t.e‘()tl‘)
the threshold. 7zis the learning constant .

II. CONTROL OF SPURIOUS CONVERGENCE

If the given data do not have discontinuity, a. RNN
can approximate them by the learning method de-
scribed in Section 2. However, in the case of approx-
imating a discontinuous mapping or a mapping with
value changes, the RNN sometimes converges to the
unlearned points, that is a. spurious convergence. Fig-
ure 2 shows the convergence points from the uniform
initial values y(0) by the RNN, which learns the points
”*” hy the learning method described in section 2. The
horizontal coordinate shows the input = and the ver-
tical coordinate shows the converged outputy.

Figure 2.(a) shows the example of a discontinuous
mapping. Many spurious convergence points appeared
near the ‘discontinuous parts. Figure 2. (b) shows the
example of a. mapping with value changes. The spu-
rious convergence points appeared aong the prolon-
gation of the center line. This results show that the
learning method described in section 2 isnot efficient
to control the network convergence for approximating
many valued mappings.

A. Integral condition

In this section, the integral condition is proposed in
order to enlarge the attractive region to the learned’
point and to control spurious convergence.

Figure( 3) shows the distribution of discontinuous
mapping data which are learned by the proposednet-
work. The mesh shows the learned output function for



(8) Approximation of a discontinuous mapping
using only differential condition.( #=0.01)
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(b) Approximation of a many valued mapping
with changes of value number using only
differential condition.( 8 =0.02)

Fig. 2. Spurious convergence by a R.NN

the input x — z. In learning of Eq.(1), the input data
(z#,y*) is always a loca graph in the z —z space as
shown in this figure. Then, the input, data exist only
in the restricted partial space. Whereas, the attrac-
tive property of the RNN is attributed to the network
output function for al input space.

The differential condition of Eq.(4) means the flat
form of the network function near the data points in
Fig.(S). However, in this case, the flat form appears
in the region far from the data. points. In order to
reduce spurious convergence, the output function in
the region far from the data points must be changed.It
is difficult to control the output function in this part
only by loca learning data

Then, we propose the learning condition which sets
the network output to be y* aso for al z except y*.
The error function of this condition can be written by
the following equation.

Eine = E
ye—2)?

/ e_LT)_{y x —f(zx,2)}2dz — 0 (10)

This condition is called the integral condition in this
paper, since it uses a. integral form.

Fig. 3. Local learning data(*) in the x — = input space and
network output function

In the equation (10), the square factor means the
error between the purpose output y* and the network
output f(zx,z). The exponential factor means the
weight to attach the more importance to the nearer
z to y*. By the effect of this exponential factor: the
integral condition enlarges the attractive region to the
learned value y* nearer to an initial value z, even
though many yxs exist for the same x*. The parameter
o means the spread of the weight.

B. Auziliary data

A RNN could learn the integral condition by the
method of steepest descent, if the integral error Ej,;
could be included in the integrated total error Eiuia
as follows.

Ettrtal = Er.:ut‘*‘,dEdi./[ +')'Einl (ll)

where v is a small constant,. As well as Egifr, Einy
does not have to be zero. Then, the weight factor is
used also for Einy. However: by adjusting 3 and v, the
convergence property delic.ately changes.

In general, the integral of Eq.( 10) cannot solve an-
aytically. However, itcan be approximated by the
compositions for discrete =, s.

N
Eint ~ A: Z Z

_lye—zn)?

€ 2

{y*—flax, )} (12)

If the exponential term is 1, the error [, can be
consider to be the output error when the input vector
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Fig. 4. Results for approximation of a discontinuous mapping
(z#,z,) and the target data y+ are presented. Besides —
the exponential term can be thought the weight factor
to this learning data.. /
Then, in this paper, the integral condition is consid- ,/
ered to be given by an auxiliary data. weighted by the //
exponential term and . e ;
e )/ / /
IV. SimuLAaTION - / /
Figure 4 shows the approximation results for the
discontinuous line data, using the RNN trained by the /
learning method in section 2 and the integral condition -

in section 3. It shows the convergence points from the
uniform initial values y( 0) as the same as Fig.%.(a). By
including the integral condition in learning, spurious
convergence points could be well reduced. Increasing
the weight factor « further, the approximation of a
discontinuous mapping could be realized. Especially
the discontinuous parts could be well reproduced.

Figure 5 shows the approximation result for the
many valued mapping with changes of value number.
In this case, spurious convergence points could be also
reduced by using the integral condition. However, if
the weight factor @ was strong, spurious convergence
points were left near the parts of value number change.
Whereas, the weight factor v was stronger, the precise
of approximation became worse. Figure 5 shows the
best results of our simulations. The adjusting of the
weight factors g and v is very important in the pro-
posed method but it is the future problem.

V. CONCLUSI ON

lii this paper, the approximation method of many
valued mappings using a. recurrent neural network is
introduced. And the integral condition is proposed
to extend it to approximating discontinuous mappings
or many valued mappings with changes of value num-
ber. It is confirmed that the integral condition can
well reduce spurious convergence of RNN and that a
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£=0.02 y=0.5 g=0.25

Fig. 5. Results for approximation of a many valued mapping
with changes of value number

recurrent neural network can be applied to approxima-
tion problem of a discontinuous mapping and a. many
valued mapping with changes of value number.
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