
Estimation of Initial Weights and Hidden Units for Fast

Learning of Multi-layer Neural Networks for Pattern

Classi�cation

Kanad Keeni y, Kenji Nakayama yyand Hiroshi Shimodaira yyy

yDepartment of Information Systems & Quantitative Sciences, Nanzan University, Japan

yyDept. Elec. & Comp. Eng., Kanazawa University, Japan

yyySchool of Information Science, JAIST, Japan

ABSTRACT

Amethod has been proposed for weight initialization in back-
propagation feed-forward networks. Training data is ana-
lyzed and the notion of critical point is introduced for deter-
mining the initial weights and the number of hidden units.
The proposed method has been applied to arti�cial data
and the publicly available cancer database. The experimen-
tal results of arti�cial data show that the proposed method
takes 1/3 of the training time required for standard back-
propagation. In order to verify the e�ectiveness of the pro-
posed method, standard back-propagation, where the learn-
ing starts with random initial weights was also applied to
the cancer database. The experimental results indicate that
the proposed weight initialization method results in better
generalization.

1. Introduction

Neural networks architectures have sparked of great interest
in recent years because of their intriguing learning capabil-
ities. Several learning algorithms have been developed for
training the networks and out of them Back-Propagation [1]
is probably most widely used. The reason for the popularity
is the underlying simplicity and relative power of the algo-
rithm. Its power derives from the fact that unlike its precur-
sors, the perception learning rule [2], and the Widrow-Ho�
learning rule [3], it can be employed for training nonlinear
networks of arbitrary connectivity. Since such networks are
often required for real-world applications, such a learning pro-
cedure is critical. However, the standard back-propagation
algorithm has the following drawbacks.

1. Learning procedure is time consuming - the learning al-
ways starts from scratch

2. It is not intuitively obvious as to how to construct an ap-
propriate feed-forward architecture. We are faced with
the problem of �xing the number of hidden units for a
particular problem.

In case of 1., the neural network criterion function is the func-
tion of the tunable parameters that the learning algorithm
attempts to minimize. Since a Mean Square Error criterion
function usually has several local minima, initial values of
the parameters in
uence the �nal parameters. It is widely
known that the initial weights largely e�ect the generaliza-
tion performance. For example, two networks with same ar-
chitecture, when trained with totally di�erent initial weights
would produce di�erent results. Several researchers have de-
signed systems in which weights are initialized so that the
initial activity of the network corresponds to the successive
rules, that may come from an expert. Wilson has proposed
Fast BPN [4], where the initial parameters are determined by
estimating the signal rank with generalized likelihood ratio

test (GLRT) and the singular value decomposition (SVD) of
the GLRT covariance matrix. However, the disadvantage of
their method is the fact that the number of hidden nodes can-
not exceed the input feature dimension. In order to tackle 1,
most of the researches have mainly focused on improving the
optimization procedure by dynamically adapting the learning
rates [5] - [6].

In case of 2., the problem has been treated in various ways.
One most common approach has been to start with a large
number of hidden units and then prune the network once it
has trained [7], [8]. However, pruning does not always im-
prove generalization. Another strategy for �nding a minimal
architecture has been to add or remove units sequentially [9],
[10].

On the other hand, it is also well known that neural networks
do not make any assumption about probability distribution
functions of data and can solve complex problems with arbi-
trary decision boundary. Therefore, it is desirable to inves-
tigate the learning characteristics of the networks for �nding
an estimate about the decision boundary. It has been shown
in [11] that training data selection largely a�ects the learning
process.

In the present study, the above mentioned draw-backs
of back-propagation has been carefully investigated and a
method has been proposed for determining the initial weights
for input to hidden layer and the number of hidden units au-
tomatically.

This paper is divided into 5 sections. The next section de-
scribes the pattern mapping criterion of MLNNs. The third
section presents the automatic method for generating initial
weights for input to hidden layer. Experimental results of
arti�cial, real world data are provided in the Fourth section.
Finally the last section is devoted to conclusion and further
researches.

2. Pattern classi�cation characteristics of

MLNN

In any pattern classi�cation system, pattern mapping or
pattern classi�cation is equivalent to dividing an N dimen-
sional space where the patterns are distributed. In case
of multi-layer neural networks (MLNN), this N dimensional
space is divided by forming hyper-planes with the help of
synaptic weights of nonlinear neurons. MLNNs do not make
any assumption about probability distribution functions of
data and can solve complex problems with arbitrary deci-
sion boundary. The degree of freedom in placing the decision
boundary is very high. Therefore, neural networks are con-
sidered to be a good choice for pattern classi�cation tasks.

Another most important aspect of neural networks is learn-



ability. In case of supervised learning the networks can �nd
optimal synaptic weights through learning. However, since
the neural networks are nonlinear systems and gradient de-
scent is used to �nd a set of weights to optimize the perfor-
mance on a particular task, there is always a possibility of
getting stuck in local minima. Therefore, global minima or
optimal solution is not always guaranteed. Furthermore, the
learning process is time consuming and it is highly dependent
on the problem that is to be solved.

If we assume that there are no overlaps among the distribu-
tion of training patterns then pattern mapping can be cate-
gorized in the following classes.

1. kxi � xjk is small
V

kyi � yjk is small

2. kxi � xjk is small
V

kyi � yjk is large

3. kxi � xjk is large
V

kyi � yjk is small

4. kxi � xjk is large
V

kyi � yjk is large

Here, xi is the input vector and yi is the corresponding output
vector, and k � k stands for the Euclidean norm. In case of 1.,
the problem is to map similar input vectors in a way such that
the output vectors also become similar. In the second case
the input vectors are similar but they are to be mapped as
di�erent patterns in the output space. The third case means
that the input patterns stay far from each other but they
are to be mapped as similar patterns. Finally, the 4th case
means that the input patterns are far from each other and
they are to be mapped as di�erent patterns. Now, 1., 3., and
4. are not that di�cult. However, in case of 2., the problem
is to map the patterns that stay very close in the input space,
as di�erent patterns in the output space. This means that
even though the solution exists, due to the di�culty of the
problem the training process would be time consuming.

For example, if we de�ne connection weight from the i'th
input to the j'th hidden unit as wij then the total input and
output of the j'th hidden unit can be de�ned as follows.

netj =

nX

i=1

wijxi + �j

Oj = �(netj)

�(netj) =
1

1 + e
�netj

where, �(�) is the activation function and �j is the bias. At
the same time the total input to the k'th output unit and the
corresponding output can be de�ned as follows.

netk =

jX

j=1

wjkOi + �k

Ok = �(netk)

where, �(�) is the same activation function as it was with the
hidden layer.

As mentioned earlier the similar patterns play a critical role
in learning. Suppose we have training patterns x1n and x2�n

that are very close in the input space and the patterns belong
to the class !1 and !2 respectively. In this case, the network
output would become extremely sensitive. This is because

the network output must change rapidly for a small change
in the input.

Now, if the decision boundary is far from the patterns x1n and
x2�n, then the corresponding outputs would have the value
O1n

�= O2�n
�= 0 or 1. However, during the learning process, as

the decision boundary approaches x1n and x2�n the output of
the corresponding patterns approach the same value, and the
learning process becomes extremely slow. In this case, as the
decision boundary moves close to the pair x1n , x2�n or enters
the region between the pair, the amount of weight correction
becomes extremely small. To be speci�c, if we assume O1n

�=
O2�n

�= some value y then the amount of correction for the
n'th pattern �n would be as follows.

�n = ��nOnj ;

�n = (tn �On) �f(netn);

where, Onj is the output of the j'th hidden unit. Now, as
the patterns x1n and x2�n are similar, the output of the jth
hidden unit would also become similar, that is

O1nj
�= O2�nj;

and
�f(net1n) �= �f(net2�n):

In this case, the weight correction will be as follows.

�1n +�2�n = �O1nj((t1n �O1n) + (t2�n � O2�n)) �f(net1n):

If it is assumed that the targets of the patterns are

t1n = 1; t2�n = 0;

and the output of the patterns are

O1n = z; O2�n = z � �;

then the weight correction would become as follows.

�1n +�2�n = �O1nj((t1n � z) + (t2�n � (z � �))) �f(net1n)

= ((t1n + t2�n)� 2z + �) �f(net1n)

= (1� 2z + �) �f (net1n)

Now, at the beginning of training, the decision boundary
would be far from x1n and x2�n and in that case the correction
of synaptic weights would not be small. However, during the
training process, as the decision boundary moves towards x1n
and x2�n, because of the similarity of the patterns the output
would approach the same value. The most critical situation
would take place as z and k�k approach the value 0.5 and 0
respectively. That is,

�1n +�2�n = lim
z!0:5

lim
�!0

(1 � 2z + �) �f(net1n) �= 0

Therefore, the correction of weights for these patterns would
become very small and as a result the learning process would
become extremely slow.

On the other hand, if the patterns x1n and x2�n are far from
each other in the input space, even if the decision boundary
moves towards them the activation of the corresponding out-
puts would not become the same at the same time. Hence,
the weight correction will not become small.



Class 1

Class 2

Figure 1: Critical points and decision boundary

3. Estimation of decision boundary

In the present study, feed forward multi-layer networks which
use back-propagation for training is considered. The decision
rule is to select the class corresponding to the output neu-
ron with the largest output. For the sake of simplicity, the
number of output unit is set to two (two-class classi�cation
problem). However, the concept can be hopefully extended
to multi-class classi�cation problems. The decision boundary
for a multi-layer feed-forward network is de�ned as follows.

De�nition 1. The decision boundary between two classes in
a feed-forward neural networks is the locus of points where
both output neurons produce same activations

If we de�ne the activation output unit i as Oi (x) where x

is an input vector and let d(x) = O1(x) � O2(x), then the
decision boundary can be de�ned as

fxjd(x) = 0g

Next we introduce the idea of Critical points as follows.
De�nition 2. The set of critical points contains pairs of points
that satisfy the following conditions:

min
k
(d(pi; qk)) = d(pi; qj)

min
k
(d(pk; qj)) = d(pi; qj)

where d(pi; qk) denotes the Euclidean distance between the
vector pi and qk.

If we denote the samples in class !1 as pi and samples in
class !2 as qj then for each sample in class !1 and class !2,
the set of critical points C can be de�ned as

C = f(pi; qj)jmin
k
(d(pi; qk)) = d(pi; qj);

min
k
(d(pk; qj)) = d(pi; qj); pi 2 !1; qj 2 !2g

Now, as shown in Fig. 1, the decision boundary must pass
through the critical points. In other words, a hyper-plane

has to be placed in between the pair of critical points. If the
coordinate of the pair of critical point (pi; qk) are (xi; yk) and
(ui; vk) then the ideal hyper plane must go through the point
(xi+uk)

2
;
(yi+vk)

2
and the slope z of the straight line can be

calculated from the following equation.

vk � yk

ui � xi
� z = �1

In the present approach instead of starting from scratch the
initial weights for the hidden units are calculated from the
critical points.

Since, the weight vectors are orthogonal to the separating
hyper-plane, the initial weights are generated in the following
way. First, the pair of critical points are determined from
the training data as mentioned above. Next for all pair of
critical points (pi; qk) the weight vectors mn are generated
by the following equation:

mn =
pi � qk

kpi � qik

and the biases �n are generated by the following equation:

�n = �mt
n � P = �

(pi � qk)
t

kpi � qkk
�
(pi + qk)

2

In the present approach these weights and biases are used as
a priori for speeding up learning.

4. Experiments

4.1. Experiments with arti�cial data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Decision Boundary

"class1.output"
"class2.output"
"class1.orgdat"
"class2.orgdat"

"01.dat"
"10.dat"

Figure 2: Decision boundary given by proposed method

In the present approach the number of hidden units is kept
the same as the number of critical points calculated from the
training data. Two dimensional data is used for training and
testing. Five samples for each class (in this case 2 classes)



were randomly generated for training. The network had two
input units, two output units and the number of hidden unit
was set to 3. Training was continued until the mean square
error reach 0.001. For testing, 10000 samples were randomly
generated and the class to which the testing sample falls is
decided by considering the maximum activation of the output
units. The network could learn the training data with 3 hid-
den units. The decision boundary is estimated from output
activation of the network in respect to the testing samples as
follows.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Decision Boundary

"class1.output"
"class2.output"
"class1.orgdat"
"class2.orgdat"

"01.dat"
"10.dat"

Figure 3: Decision boundary given by Conventional Back-
propagation

For each testing sample correctly classi�ed as class !1, �nd
the nearest testing sample correctly classi�ed as class !2.
The same process is repeated for the testing samples clas-
si�ed as class !2. Now the line connecting the pairs men-

Init weight # Epoch # Epoch
Proposed method Standard BP

Seed1 6345 21279

Seed2 6341 21347

Seed3 6251 21263

Seed4 6179 21050

Seed5 6224 22019

Mean 6268 21392

Table 1: Comparison of results

tioned above must pass through the decision boundary since
the pair of samples correctly classi�ed di�erently. The de-
cision boundary given by the network is shown in Fig. 2.
In Fig. 2, the calculated critical point pairs are connected
by a line. In order to evaluate the e�ectiveness of the pro-
posed method another set of experiments were performed by

employing conventional back-propagation algorithm and the
decision boundary is shown in Fig. 3. Next, the network was
trained with �ve di�erent initial weights (weights for hidden
to output unit connection) , the and the result is summarized
in Table. 1.

It can be seen in Table. 1., that the iterations necessary for
the proposed method is less than 1/3 of that of standard back-
propagation. In case of standard back-propagation, there is
no other way than to cut and try for determining the number
of hidden units necessary for solving a problem. In case of the
proposed method, the number of hidden unit is determined
automatically.

4.2. Selection criterion of critical points

The straight forward approach of setting the number of hid-
den units to the number of calculated critical points could not
be applied due to the enormous number of critical points. As
it has been mentioned previously, the critical points are the
points that stay very close to each other and e�ect the whole
learning process in a great extent. Therefore, the �rst cri-
terion for selecting the pair of critical points based on the
minimum distance among all the pairs is reasonable. How-
ever, this kind of approach is local, in the sense that a large
number of critical points where the distance among each pair
is very small may appear very close to each other in the input
space. Now, if the characteristic of the hyper-planes formed
by the sigmoid function is considered, it is unrealistic to place
a hyper-plane for each of these critical points. Therefore,
some criterion for rejecting the unnecessary hyper-planes is
necessary.

Based on the idea that the input patterns that are very close
to each other would slow down the training process, the fol-
lowing approach can be considered for rejecting the unneces-
sary hyper-planes.

Suppose, we have two hyper planes Pa and P
b
as shown in

Figure 4. Now, if we express the equation of the hyper-planes
as:

a

b

P

P

Figure 4: Correlation of hyper-planes

a1x1 + a2x2 + � � � + anxn + a0 = 0

b1x1 + b2x2 + � � � + bnxn + b0 = 0

and the component vector of a of Pa and b of P
b
as



a = (a1; a2; . . . ; an) and

b = (b1; b2; . . . ; bn)

respectively, where,

Pn

i=1
a
2
i = 1Pn

i=1
b
2
i = 1.

In this case, the �rst pair of (pi; qk) is selected based on
the minimum distance among all pairs of critical points. In
the next step, the previously selected critical points pair is
ignored and the correlation of the previously selected pair
and all the other remaining critical points are considered in
the following way.

Suppose, Pa is the hyper plane calculated from the �rst pair
of critical points (pi; qk) andQb is the hyper-plane with which
the correlation of the �rst hyper-plane is to be compared. So,
in this case we will have two hyper-planes as shown in Figure
4.

In this case, the correlation of Pa and Q
b
can be de�ned as:

D(Pa;Qb) =
atb

kakkbk

In the present approach, if D(Pa;Qb) is < max� then Q
b
is

merged with P
b
otherwise Q

b
is also selected and the process

is repeated for all the other remaining critical points.

4.3. Experiments with Real Data

Init weight # Epoch # Epoch
Proposed method Standard BP

Seed1 131 1771

Seed2 131 2566

Seed3 128 2551

Seed4 130 1270

Seed5 129 3215

Mean 130 2275

Table 2: Comparison of training epoch

Experiments were performed by using the cancer data base
obtained from the University of California machine learning
database. The database is publicly available and it contains
699 instances, each having 9 attributes. It was divided into
training (60%) and testing sets (40%) and �ve experiments
were performed by setting the value of the seed to �ve di�er-
ent values. Here, the value of < max� was set to 26 degree.
This angle is determined by experience. The performance
of the proposed method has been compared with the stan-
dard back propagation where the learning starts with small
randomly distributed initial weights. The experimental out-
comes are are summarized in Table 2 and Table 3. It can be
seen in Table 2 that the proposed method takes less train-
ing epochs compared to standard BP. On the other hand it
is shown in Table. 3 that the proposed method results in
slightly better performance.

Classi�cation rate Proposed method Standard BP

Training data 97.71 97.71

Testing data 96.42 96.06

Table 3: Average accuracy rate (%)

5. Conclusion

It has been successfully shown through experiments that the
a priori related to decision boundary can be employed for
determining the initial weights of the network. Compared
to standard back-propagation the proposed method reduces
training time. The method has been successfully applied to
the publicly available cancer database. On the other hand
the method determines the number of hidden units automat-
ically.

However, optimality of the number of hidden units deter-
mined by the proposed method is yet to be investigated. The
method has to be applied to other pattern classi�cation prob-
lems.

References

[1] Rumelhart, McClelland, and the PDP Research Group,
\Parallel Distributed Processing," The MIT Press, 1989.

[2] Rosenblatt,F : Two Theorems of Statistical Separability
in the Perceptron;Proceedings of a Symposium on the

Mechanization of Thought Process, Her Majesty's Sta-

tionary O�ce, London,1959,421-456.

[3] Widrow, B., and Ho�, M.E: Adaptive Switch-
ing Circuits;Institute of Radio Engineers, West-
ern Electronic Show and Convention, Convention
Record,part4,1960,96-104.

[4] David H. Kil, Frances B. Shin, \Pattern recognition and
Prediction with applications to Signal Characterization,
" AIP PRESS, 1996, pp. 134-138.

[5] Riedmiller, Martin and Braun : RPROP - A fast Adap-
tive learning algorithm; Technical report Universitat

Karlsruhe, 1992.

[6] Y. Riedmiller, Martin and Braun : RPROP - A fast
Adaptive learning algorithm; Technical report Universi-
tat Karlsruhe, 1992.

[7] M. C. Mozer, P. Smolensky: Skelitonization : A tech-
nique for trimming the fat from a network via relevance
assessment; in Advances in neural information process-

ing systems, 1, pp. 107-115, 1989.

[8] J. Sietsma and Dow : Neural network pruning - why and
how;Proceeding of the second international conference
on neural networks, pp. 326-333, July 1988.

[9] Fahlman, E. Scott: An empirical study of learning speed
in back propagation networks; Technical report CMU-

CS-88-162, 1988.

[10] T. Ash: Dynamic node creation in back propagation
networks; Connection Science, 1(4), pp. 365-375, 1989.

[11] K. Hara and K. Nakayama: Training Data Selection
Method for generalization by multi-layer Neural Net-
works;Transaction of Information and Systems Society

of Japan, Fundamentals, VOL.E81-A, No.3,pp. 374-381,
March 1998


