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Abstract

A hybrid nonlinear time series predictor was proposed, in
which a nonlinear sub-predictor (NSP) and a linear sub-
predictor (LSP) are combined in a cascade form. In this
paper, We propose a separate learning method, in which the
NSP is trained until convergence, then the LSP is trained
using the final NSP weights. If the NSP and the LSP are
trained simultaneously, the input of the LSP will be far from
the correct prediction at the early iterations. This causes
disturbance in the LSP learning process. The proposed sep-
arate learning method gives better results than the simulta-
neous one. Furthermore, a new learning algorithm for the
NSP is proposed. By enforcing the NSP weights and biases
to take large values until a certain number of the learning
iterations, the input potential of the hidden neurons are ex-
panded and shifted towards the saturation regions of the sig-
moid functions. As a result, noise effects can be suppressed.
Computer simulations, using real world time series, demon-
strates usefulness of the proposals.

1. Introduction

The linear signal processing tools are insufficient to deal
with nonlinear time series processing. On the other hand,
neural networks are useful for nonlinear adaptive signal pro-
cessing. They have been applied successfully in a variety of
signal and information processing fields [1],[2]. One of these
fields is the nonlinear time series prediction [3]-[7].

We have considered the nonlinear prediction problem as
a pattern mapping one. A multi-layer neural network, which
consists of sigmoidal hidden neurons and a single linear out-
put neuron, has been employed as a nonlinear sub-predictor
(NSP). Since the NSP includes nonlinear functions, it can
predict the nonlinearity of the input series. However, the
prediction is not complete in some cases. So, the prediction
error of the NSP is further compensated for by employing a
linear sub-predictor (LSP) after the NSP. Also, a nonlinear-
ity analysis method for the time series has been proposed
to estimate the predictor size [8]-[10].

In this paper, we propose a learning methodology for the
hybrid nonlinear predictor [8]-[10] to obtain good general-
ization. This method is called a separate learning method,
in which the NSP is trained untill a certain number of learn-
ing iterations, then the LSP is trained using the final NSP
weights. A common learning method called a simultaneous
learning method, in which the NSP and the LSP are trained
simultaneously, is investigated for comparison. Both the
proposed separate learning method and the simultaneous
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learning method are based on the normal back propagation
algorithm.

Furthermore, we propose a new enhancement back-
propagation algorithm to be applied in the noisy environ-
ment. The purpose of the proposed algorithm is to suppress
noise effects on the predictor performance using the nonlin-
earity of the activation functions used in the hidden neurons
of the NSP.

Computer simulations, using real world time series are
demonstrated.

2. Hybrid Predictor

2.1 Network Structure

Figure 1 demonstrates the structure of the hybrid predic-
tor [11]. As a first stage of the predictor, we employ a
multi-layer neural network (MLNN), which is good for pat-
tern mapping. It is called a nonlinear sub-predictor (NSP).
It consists of sigmoidal hidden neurons and a single linear
output neuron. The NSP is trained by the supervised learn-
ing algorithm using the sample z(n) to be predicted as the
target. This means the NSP itself is trained as a single pre-
dictor.

Since the NSP includes nonlinear functions, it can pre-
dict the nonlinearity of the input time series. However, the
prediction is not complete in some cases. So, the NSP pre-
diction error is further compensated for by employing a lin-
ear finite impulse response (FIR) sub-predictor (LSP) after
the NSP. The LSP is trained by using z(n) as the target
too. Thus, the same target is used for both the NSP and
the LSP.

The reason why we use z(n) as the target for the NSP is
explained as follows: First, it is difficult to obtain the target
only for nonlinear prediction. Second, since the NSP has a
linear output neuron, the linear prediction is also possible
to some extent. So, nonlinear and some part of linear prop-
erties of the input signal can be predicted by the NSP and
the remaining part is predicted by the LSP.

2.2 System Equations of NSP

The output of the jth hidden neuron v;(n) at time n is
expressed by

wj(n) =Y wjiz(n i) +6;, (1)

v;(n) = fn(u;(n)),

where wj; is the connection weight from the sth input node

j=1,2,..L, (2)
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Fig. 1. Structure of the hybrid predictor.

to the jth hidden neuron. L is the number of the hidden
neurons and ; is the biases. The activation function fy()
used in the hidden neurons is a sigmoid function given by

1

3)

The output layer contains only one linear neuron. Its output
y1(n) is expressed by

u(n) =Y wjv;(n) +9, (4)

y1(n) = fo(u(n)) = u(n), (5)

w; is the connection weight from the jth hidden neuron
to the output neuron and € is the biases. The connection
weights w;; and wj, and the biases 6; and 6 in the NSP are
adjusted by the back-propagation algorithm.

On the other hand, the LSP coefficients are adjusted by
the least mean square (LMS) algorithm.

2.3 Prediction Error Evaluation
The prediction error of the NSP is
ensp(n) = 2(n) - 31 (n). (6)

The instantaneous squared error of the NSP is

L2 cn(n). )

Ensp(n) = 5

The mean square error M SE over an epoch is

M
MSEnsp = % > énse(n), (8)

n=1

where M is the number of samples in one epoch. The mean
squared error at the LSP output is calculated by the same
way. The normalized root-mean-square error (NRMSE)
will be used to express the prediction error.

NRMSE = \/MSE/P., (9)

M S E indicates the mean squared error at the output of the
NSP and the LSP. P, = (xTx)/M is the input signal power.
x is the vector contains the input samples. T is the trans-
position operator.

3. Learning Methods for Noise-free and
Noisy Data

3.1 A Separate Learning Method for Noise-free
Data

The NSP can predict nonlinearity and some part of linear-
ity of the time series. Therefore, z(n), that is the target
for the hybrid predictor, is used for the NSP too. In other
words, the NSP has an independent target and is trained
independently. On the other hand, the LSP is trained so as
to compensate for the prediction error caused by the NSP.

In a simultaneous learning method, in which the NSP
and LSP are trained at the same time, the LSP input is far
from the correct prediction at the beginning. Then it will
cause a disturbance in the LSP learning process.

We propose a separate learning method. This learning
process consists of the following two stages:
Stage 1: The NSP is trained using z(n) as a target by the
normal back-propagation algorithm (NBP).
Stage 2: The NSP is fixed as the above result. The LSP is
trained using z(n) as a target by LMS algorithm.

These two learning methods will be compared through
computer simulation.

3.2 An Enhanced Algorithm for Noisy Data

In measuring physical phenomena, data transmission and
processing, noise cannot be avoided. Therefore, in real
world applications, noise effects must be investigated.

One learning method to suppress noise effects is to use
many noisy data in the learning phase. Another method,
in which frequency bands of signal and noise are separated,
then the noise can be filtered by linear filtering. Further-
more, if saturation type nonlinear functions are used in the
hidden neurons, the noise effects can be suppressed by shift-
ing or expanding the input potential of hidden neurons to-
ward the saturation regions. The first method requires a
huge number training data, and a very long time. The sec-
ond method is rather difficult for nonlinear time series.

In this section, a learning algorithm based on the third
idea is proposed. An enhancement back-propagation algo-
rithm (EBP) is proposed to be applied in the noisy envi-
ronment. If the input potential u;(n) of the hidden neurons
are located in the saturation regions of the sigmoid function
fn() in Eq.(3), effects of the noise included in the input time
series can be suppressed. Since u;(n) is given by Eq.(1), it
can be shifted or expanded toward the saturation regions
by enlarging w;; and 6;. For this reason, the following en-
hanced learning method is proposed for the NSP.

Step 1: The NSP is trained by the back-propagation algo-
rithm in an ordinary fashion.
Step 2: The NSP trained in Stage 1 is further trained



through the modified back-propagation algorithm, in which
the following enhancement is embedded.

Let wji(n) and 6;(n) be the connection weights and
the biases updated at the nth-epoch through the back-
propagation algorithm. At the same epoch, they are further
enhanced as follows:

(14 r")wji(n), 0<r <1,
(1+7r")8;(n), O0<r<1. (10)

These values are denoted wj;(n) and 6;(n), respectively,
once more, and are used in the (n+1)-th epoch of the back-
propagation algorithm. r is determined by experience, re-
sulting in a small value. This means effect of r™ will be
vanished within some earlier epochs.

Step 3: After the NSP learning convergence, the LSP is
trained by the LMS algorithm with fixed NSP weights and

biases obtained above.

4. Simulation Results and Discussions

4.1 Noise Effects in Nonlinear Prediction

Training phase:

It is assumed that we can get noise-free time series and
a probability distribution function of noise. The train-
ing 1s carried out using the noisy data as the input and
the noise-free data as the target. The noise used here
is Gaussian white noise. The training data sets are
prepared by adding 10 noise sets to the noise-free time
series. So, 10 noisy training data sets are used in one
epoch.

Effect of the training using the noisy time series
is evaluated. Especially, distribution of the input po-
tential of the hidden neurons, that is, u;(n) given by
Eq.(1), is investigated. The sigmoidal functions are
used in the hidden neurons. If u;(n) for all the noisy
data can be distributed mainly in the saturation re-
gions, then noise effects can be suppressed.

Testing phase:
After the training, the predictors are tested using other
samples of the time series and the noise, which are not
used in the training phase. In this phase, the input sig-
nal and the target are the noisy data and the noise-free
data, respectively.

Furthermore, we employ the following reference in
order to evaluate the prediction performance.

R=\/(MSFa; + Pa)/P. (11)

MSEy,; and P, are the mean square prediction error
for the noise-free time series and the noise power, re-
spectively. The meaning of R is the following: Since

the noise used here is white noise, which cannot be pre-
dicted, the noise will remain just as it is. Therefore, the
mean squared prediction error becomes M SE,; + P,.
If the prediction error obtained in the simulation is less
than R, then the noise effect can be compensated for
through the training. The predictor becomes robust
against the additive noise.

4.2 Nonlinear Time Series
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Fig. 2. Sunspot time series from 1700 to 1979

Computer simulations have been done for a one-
step forward prediction task for Sunspot data shown
in Fig.2. Data file of Sunspot time series was down-
loaded from Santa Fe public home page. We have used
the record of the sunspot data from the year 1700 to
1920 (221 samples) in the training phase and the data
from 1921 to 1979 (59 samples) in the testing phase.
The same data were used in [3] and others.

4.3 Prediction performance

TABLE I
NRMSFE IN TESTING PHASE USING SUNSPOT DATA.
S/N = 29.5dB
Learning  Testing | NBP-1 | NBP-IT | EBP
NF+NF NF+NF | 0.2074 | 0.1684 0.1539
NF+NF N+NF 0.2088 | 0.1702 0.1558
N+NF N+NF | 0.2334 | 0.1864 | 0.1675

Table T shows the NRMSFE for the hybrid predictor
trained by the normal back-propagation in both the si-



multaneous (NBP-I) and the separate (NBP-II) learn-
ing procedures and the enhanced back-propagation
(EBP) algorithms with r=0.01 in Eq.(10). In this table,
for example, N+ NF means the noisy and the noise-free
data are used for the input and the target, respectively.
Sunspot data are used with the signal to noise ratio
S/N=29.5dB.

We have three points to be clarified. First, in the
first row, using the noise-free data for both the input
and the target, NBP-II is better than NBP-I. In the
second row, using the noisy input data in the testing
phase, the NRMSE is slightly increased. However,
NBP-1I is still better than NBP-I. The third point, us-
ing the noisy input data in both the learning and the
testing phases is not useful for noise effect reduction.
At the same time the EBP algorithm gives the best
prediction performance and noise effect suppression.

TABLE 11
NRMSFE FOR NOISY SUNSPOT DATA USING HYBRID PREDICTOR
TRAINED BY NORMAL AND ENHANCED BACK-PROPAGATION
ALGORITHMS. S/N = 29.5dB.

Learning  Testing | NBP-II | EBP R
NF+NF N+NF 0.1702 0.1558 | 0.1720
N+NF N+NF 0.1864 0.1675
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Fig. 3. Histogram of input potential for two hidden neurons of
NSP trained by NBP and EBP algorithms. Sunspot noise-

free data are used.

Table IT compares between R defined by Eq.(11) and
the NRMSE. Since S/N=29.5dB, R becomes 0.172.
The N RM SE obtained by the NBP-II using the noise-
free training data is almost the same as R. This means
the white noise effects cannot be suppressed. It re-

mains as it 1s. When the noisy training data are used,
the NRMSF is increased.

On the contrary, the EBP algorithm with »=0.01 in
Eq.(10), can reduce the NRM S E under R. This means
noise effects can be suppressed by the new enhanced
algorithm. In this enhanced algorithm, still using the
noisy training data is not useful.

Figure 3 shows the histogram of the input poten-
tial u;(n) of two hidden neurons. The noise-free data
are used in the learning phase. The distribution of
u;(n) obtained by the EBP algorithm are expanded and
shifted toward the saturation region of the sigmoidal
function compared to those obtained by the NBP-II al-
gorithm.

5. Conclusion

In this paper, a separate learning method has been pro-
posed for the hybrid nonlinear predictor. This learning
method gives better results than the simultaneous one.
Furthermore, a new enhanced back-propagation algo-
rithm has been proposed for noisy data. The training
data can be drastically saved, while generalization is
guaranteed. The connection weights and the biases are
slightly enhanced to reduce the noise effects.
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