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Abstract

In this paper we present a new generalization of the Backpropagation learning algorithm
by using interval arithmetic.

The proposed algorithm contains Backpropagation as a particular case and permits the use
of training samples and targets which can be indistinctly points and intervals.

Among the possible applications of this algorithm we report its usefulness to integrate
expert’s knowledge and experimental samples and also its ability to handle "don’t care
attributes” in a simple and natural way in comparison with Backpropagation.

1.- Introduction

One of the first successful Neural Networks training paradigms was Backpropagation with
Muldlayers Neural Networks [1]. this paradigm is also one of the most used nowadays.

There has been many modifications of this waining algorithm, one of them is the
extension to interval arithmetic proposed in [2]. Interval arithmetic [3] allows Backpropagation
to use real vectors and interval vectors as training samples and targets for a Neural Neitwork. In
this way an interval at the input of the Neural Network is converted to another interval at the
output.

A severe limitation of the algorithm proposed in [2] is that it has only an output unit and
can only be applied to classification problems with two classification classes.

In this paper we propose a new and direct extension of Backpropagation to interval
arithmetic which will be called Interval Arithmetic Backpropagation (IABP). The proposed
algorithm can be used with any number of output units and every equation reduces to the
equations of Backpropagation for the case of a real vector input, under this point of view IABP
can be considered a generalization of BP.

We show that this algorithm can integrate experts knowledge and training samples in the
training set in the same way of (2] and we also show that it can handle "don’t care attributes”
in a very simple and advantageous way in comparison with Backpropagation [4].

In the next sections we introduce the basic equations of interval arithmetic and we present
the new algorithm.

2.- Interval Arithmetic.

The basic equations of interval arithmetic [2,3] which are useful in the following

development are:

Sum of intervals: A+ B = [ab,al] + [bf,bY] = [abebb, aleb?]
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Product by a real numbecr: (mat,ma¥] , if ms0

m-A=m- [a* a*] = ,
! ( ] [mra®, ma%¥l , if m<o

Exponential function: exp A = exp [a% a¥] = [exp at, exp af]
3.- Interval Arithmetic Backpropagation.
First of all. we should define a generalization to interval arithmetic of the transfer function
of the neuron: ( ) ) 1
£(Net) = f{[nectt, necv)) = (f{nectt),r(net¥] where: f(x) = —o08 =~
1 + exp(-x)
The definition is consistent because f(x) increases monotonically. Next we will define the
relationships in'the neural network.
The input patterns in general will be interval vectors:

. ) Ip, = [I5:, T8 )
The output of the hidden units: it Pty opd

Ninputs
Hp ;= [(Nety ) where: Net, , = 3 wy Ty, + 8
Il
and:
Ninputs L Ninpurs o v Ninputs v Ninputy L
L = U = .
necg = 3wy Tas 3w, Tas 6, metpy= 3wy Tag v Y wi T +0;
1=1,w. ;20 iel,w. .<0 fe1,w, 420 J=1,wy (<0

Analogously, the output of the Neural Network:

Nhiddon
Op, i = L(Nety ) = £ E Wy, i Hp. ; * 85)

i=1

The targets will also be, in general, a interval vector: . o
poe = [Co ks €5, 5]

And the Mean Square Error function can be defined as a generalization of BP Error

fUnC[iOn: Noutputy
. {(cf =08 )2+ (ef 08 7

DI
It}
ENI

kel

Like in BP, the learning in IABP is the process to minimize the above cost function, the
weights are changed according to the following function:

awy; {C+1) =7 - (-—5%) + B cawy (8)
where 7 is the step size and [ the momentum. The partial derivatives are calculated in the
appendix, the only precaution in the calculus is to consider the sign of w;; .

- The percentage correct error function can also be defined for classification problems. A
possible definition with threshold 0.5 is: suppose the target for a pattern P is T;=[1 ,1] and
T,=[0.,0] fori=jandi=1 .. Noutput. Then, this pattern should count positively in the percentage
if Op°=20.5 and Oj,"< 0.5.

4.- Experimental results.
In this section three bidimensional examples are presented, Fig.1,2.3. The example in
Fig.1 corresponds to a mixture of real and interval vectors in the training set, Table 1. In Fig.1
it is represented the training samples and a line which represents the threshold 0.5 of the output
units, i.e., the achieved classification. This result correspond to a Neural Network with 2 output
units, 3 hidden units and 2 inputs. The example in Fig.2 corresponds to the results of a Neural
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Network with 2 inputs, 7 hidden units and 3 outputs, the data set is in Table 2. Finally, the
example 3 comrespond to a Neural Network with 2 inputs, 8 hidden units and 5 outputs. The data
set is in Table 3. In all the examples it is achieved a perfect classification of the training set.
Integration of expert’s knowledge and sample data. The kind of expert’s knowledge

considered is a set of "if ...them” rules like the following one:
if Xp, < [ALBy] ... and X3, < [A,,B,] then X, e Gg
where X; is a pattern vector and Gy its classification class.

This type of rules can be easily codified by using
interval arithmetic ([A;,A;] will be the inputs of the Neural
Nerwork), and. can be included in the training sct together
with sample data, e.g. Example 1.

Handle of "don’t care attributes’.

The codification of "don’t care attributes” for normal
BP, in the case of discrete, inputs was already studied in
[4]. Suppose we have the sample vector: [1,2,D,2] where D

Fig.1. Example 1, classification.

means “don’t care”. For normal BP we should include in the o 4 s r’ 1 P
training set all the vectors which result from codifying D [ crass 1
with all its possible values or with two values, the maximum Class 2
possible value d,,, and minimum d_,. This yields an Fig.2. Example 2, classification.
exponential increase in the waining set if we have more 20._
than one D in a vector. With interval arithmetic we can i
codify D like an interval [d,..d..]. the result is only a 8-
training vector and this approach is valid for the discrete and 2
the continuous case. We have reproduced the best result in ]
[4] for the three examples used there IS1, IS2 and IS3 by s .
using an interval arithmetic codification of the "don’t care .
auributes”. The training set in our case wgs smaller. 4 -
Table 1. Training set of example 1. 0 ] ; ' .
Classes. Training Samples. Target o 4 8 12 116 20
C.1 Inp.Xl {4.4] [8.8) [11,11][13,13][13.13] [0,10] (1.0] B cicer 1+ [X] crase s
C.1 Inp.Y} (11,11} (11,11] [3,3) [6.6] [10.10] [0,10] [1.0] E] Class 2
C2 Inp.Y|[12.14] (15.15] [2.21 [3.4] [15.15] [0.20] [16,20]] [0,1) Fig.3. Example 3, classification.
C.2 Inp.X] [2.2] [6.6] [14,14] [15,15] [15.,15] [16,20] [0.20] [0,1) 2
Table 3. Training set of example 3. 16
P Classes. | Training Samp.] Target
Table 2.' [rmlnu;g set of C.1 Inp.X| (1.18] [13.191[ [1,0.0.0.0] 12
example = C1inpx| [5.15] (L.3] |11.0.0.0.0] .
Classes. | Training Samp.| Target C.2 np.X 16.12] (0.1.0,0.0]
- C.2 Inp.Y {S.11] [0.1.0,0,0] 4
C.1inpX] 8.13] (28] (1.0.0)] €3 mpX] T3] 110.0.1.0.0]
C.1 Inp.Y]| {16,20] [5,15]][1.0.0] C.3 Inp.Y] [8.14] [0.0.1.0,0] °
C.2 Inp.X| [1,53] [6.12}|[0.1.0] C.4 Inp.X] [4.10] [0.0,0,1,0] ] 4 (] 2 %
C.2 Inp. Y] (8,141 [9.11]]10.1.0] C.4 Inp.Y] 1.5] (0,0,0.1.0] Ec“,.. 1 E] Class 4
C3 tnp X[ [3.10]_(13.191 [(001]] (€3 mpX 137 (100001 [flciess 2 [2] craes &
C3InpY[ (151 113 J10.00))) [CsTmpy [16.20] [10.0,0.0.1] [¢lcioss 3
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5.- Conclusion and Discussion.

We have generalized the BP training algorithm to interval arithmetic and we have shown
two possible applications of this new algorithm: integration of expert’s knowledge and sample
data and the handle of "don’t care attributes”.

In general, this algorithm will add flexibility to the codification of inputs and targets. For
example, in the case we have a strong subjectivity and imprecision (e.g., the codification of
symptoms in a medical diagnosis classification problem) the use of intervals in the codification

may reduce this subjectvity and imprecision, perhaps it would be a more appropriate way to
codify this cases.

™ 6.- Appendix.
For the weights between the hidden units and the outputs:
OB, _ 388, 00;: dnets;, , OE, 807, dnetf.
Owy : 80L, onetkf, Wi aof, dnetf, 0w :
which gives the result
om, _ [8% . HE, » Y, HE . ., if w, 20 . 85.x = ~5 (t7x~Orx) OFx (1-Of i)
_ - . . .3 - . where:
Oy, 4 85,k HE s = 884 Hp.: , 1f w, ,<0 8%, = —% (tf =08 ) Of, (1-0F,)
For the weights between hidden units and input:
3B, _ (8Es 380f,, Oneci,. OHE, anetéj} LT dE,
ow, ; ke 80F . Onecri, OHE.: dnetf; ¥:: x50 807 &
900f . Odnmets, 8xY, 8neti, } . (_9E» 80f, Odnetf;
dneck, @&HE, dnety; 9% ko 805, Onetf, OHE;
BHF ; anec‘?’.j} . ( 88, 30f, Odnec;, &HE; Oneti; }
S dnets, owl, w b7 808, dnetf, OHE, dneck; Ows.
which gives the result:
£ oz . e 8hr ,={( 8% Lw, , + 8Y wy, ) -HE -(1-HE )
BE,., ___6)7;_7—1;'1*61’2;‘11};{_; , 1L "‘V'j__-'ZO where: P, J k,\g‘:xo Pk Wik, 5 k,‘;,,(o P,k "k, 3 7,3 P, 3
Owy ;s |0hF ,I5 ;+8hf 415 i w; ;<0 8hp 3=( Y 65wy, *+ 3 8%, kWi, ;) “Hp ;7 (1-H ;)
2, Wy, 120 ¥, Wi 240
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