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ABSTRACT

In a sub-band adaptive filter, an i-th analysis filter Fi(z)
separates the i-th sub-band Ωi. An unkown system H(z)
is identified as H(z)Fi(z) = Fi(z)Ai(zK), ω ∈ Ωi, where
Ai(zK) is the i-th sub-band adaptive filter. Fi(z) can be
cancelled as Ai(zK) = H(z), ω ∈ Ωi. Furthermore, this
can be expressed as Ai(zK) = Bi(z)H(z), where Bi(z) =
1, ω ∈ Ωi, = 0, ω ∈ Ωj , i �= j. Bi(z) is not really used,
rather it appears equivalently in deriving the ideal sub-band
adaptive filters. An impulse response bi(n) of Bi(z) dis-
tributes over both negative and positive time domains. Since
the impulse response ai(n) of Ai(zK) is a convolution sum
of the impulse response h(n) of H(z) and bi(n), it also dis-
tributes in both time domains. Thus, the ideal sub-band
adaptive filters are noncausal. Two methods for relaxing
the noncausal condition are investigated. One of them is to
insert time delay in serial to the unknown system in order to
shift ai(n) toward the positive time domain. The other is to
set the sampling rate in the sub-bands high so as to generate
split bands and reduce the ratio of ai(n) in the negative time
domain.

1. INTRODUCTION

Audio echo cancelers are important for TV conference sys-
tems. However, the impulse response of room acoustic char-
acteristics is very long, for instance several thousand sam-
ples with a sampling rate of 8 kHz. This requires a very
high-order adaptive filters. Therefore, sub-band adaptive
filters become very atractive in order to save computational
complexity and to make fast convergence possible [1]. One
method is to use the sampling rate higher than twice of the
sub-bandwidth. The other uses the lower sampling rate can-
celling the cross terms [2],[3]. In this paper, the former
approach is taken into account. The modulation sub-band
adaptive filters [4],[5] can minimize the sampling frequency
just twice of the sub-bandwidth. The Polyphase and FFT re-
alization of a filter-bank is very efficient in order to reduce
computational complexity [6],[7],[8].

The residual error in the sub-band adaptive filters is larger

than that obtained by the full-band adaptive filters [5]. This
point has not been well studied. In this paper, convergence
property of the sub-band adaptive filters is theoretically ana-
lyzed. Two kinds of methods are investigated to improve the
convergence property. Finally, several examples are shown
to confirm the theoretical results.

2. MODULATION SUB-BAND ADAPTIVE FILTER

2.1. Block Diagram and Signal Spectra
Figure 1 shows a block diagram of the modulation sub-band
adaptive filter [5],[7]. Fi(z) and Gi(z) are complex analy-
sis and synthesis filter banks, respectively. The number of
sub-bands is M and the sampling rate reduction is 1/K .
The carrier signals applied to both modulator (MOD) and
demodulator (DEM) are complex. The input signal x(n) is
real. After the modulators, only the real part is transferred.
The adaptive filters (AF) are real filters. After the synthesis
filter bank, only the real part is transferred.

Figure 2 shows examples of the signal spectra at the
analysis filter bank and the modulator. The number of sub-
bands M is 6. The sampling rate fs is 1. The output of
Fi(z), i = 0 ∼ 5, are shown in Fig.2(a), and one of them,
that is the F1(z) output, is shown in Fig.2(b). This spec-
trum is shifted to the origin by the modulator as shown in
Fig.2(c). By taking the real part of the modulator output,
the symmetry part appears as shown in Fig.2(d). Finally,
this real signal is down sampled by fs/K , K = 4, as shown
in Fig.2(e). The spectrum is expanded over a whole band
0 ≤ f ≤ fs/K . However, aliasing does not occur. K is not
the same as M . The signal spectra in the demodulator and
the synthesis filter bank are the same in the reversed order.

2.2. Analysis Flters and Sampling Rates
The fundamental low-pass filter (LPF) is denoted

F (z), z = exp(j2πf/fs) (1)

Fi(z) are obtained by shifting F (z) as follows:

Fi(z) = F (zi), i = 0 ∼ M − 1 (2)

zi = exp

[
j2π(f − fs/4M − ifs/2M )

fs

]
(3)
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Fig. 1. Modulation sub-band adaptive filter.
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Fig. 2. Signal spectra at analysis filter bank and modulator
outputs.

If the transient bandwidth is given by 2∆f , then a single
sub-band occupies fs/2M+2∆f . Thus, the minimum sam-
pling rate after down sampling is

fsl = 2(fs/2M + 2∆f). (4)

Furthermore, the following relations are held.

fsl = fs/K (5)

∆f =
fs

4
(

1
K

− 1
M

) (6)

Next, the carrier signal applied to the modulator is given by

ci(n) = exp

[
j2π(−∆f + ifs/2M )n

fs

]
(7)

3. IDEAL CHARACTERESTICS OF SUB-BAND
ADAPTIVE FILTERS

3.1. Virtual Bandpass Filters

Let sub-band width be B, and a sampling frequency in the
sub-band satisfies fsl ≥ 2B. A system identification prob-
lem is taken into account as shown in Fig.1. Let a transfer
function of the unknown system, ”plant”, be H(z). The i-th
analysis filter Fi(z) separates the i-th sub-band Ωi. The cor-
responding adaptive filter is denoted Ai(zK). We assume
the separation is complete, and no aliasing occurs.

Suppose the unknown system is exactly identified in the
sub-band Ωi, then the following is held.

H(z)Fi(z) = Fi(z)Ãi(zK) (8)

where Ãi(zK) indicates the ideal sub-band adaptive filter.
In the above equation, Fi(z) can be cancelled as,

Ãi(zK) = H(z), ω ∈ Ωi (9)

Ãi(zK) is operated with fsl, then the frequency band to be
considered is limited to Ωi.

Let Ãi(z) be a transfer function satisfies

Ãi(z) =
{

Ãi(zK) ω ∈ Ωi

0 ω ∈ Ωj , i �= j
(10)

This means the impulse response ãi(Kn) of Ãi(zK) is ob-
tained by down sampling the impulse response ãi(n) of
Ãi(z). Therefore, ãi(n)isusedinsteadãi(Kn) in the fol-
lowing for convenience.

From Eq.(9), Ãi(z) is obtained by

Ãi(z) = Bi(z)H(z) in a whole band (11)

Bi(z) =
{

1 ω ∈ Ωi

0 ω ∈ Ωj , i �= j
(12)

Bi(z) is an ideal filter with zero phase. The ideal adap-
tive filters in the sub-bands are obtained as a cascade form
of the unknown system and the ideal bandpass filter. This
ideal filter is not really used in the sub-band adaptive filter,
rather it appears equivalently to relate the unknown system
and the sub-band adaptive filters. So, it is called a vertual
bandpass filter in this paper.

3.2. Noncausal Sub-band Adaptive Filters

Since Bi(z) has zero phase, its impulse response bi(n) dis-
tributes over negative and positive time domain. Thus, Bi(z)
is a noncausal system. The impulse response ãi(n) of the
adaptive filter is a convolution sum of the impulse response
h(n) of the unknown system and bi(n), then it appears in
the negative time domain. Since H(z) is causal, that is
h(n) = 0, n < 0, then ãi(n) is given by

ãi(n) =
n∑

m=−∞
bi(m)h(n − m) (13)

Even though h(n) is causal, ãi(n) can be noncausal due to
bi(n), which occupy the negative time domain (n < 0).
This is a very important point, that is, ”the ideal charac-
teristics of the sub-band adaptive filters are noncausal”.

However, the noncausal filters cannot be actually re-
alized. In other word, causal filters cannot approximate
ãi(n), n < 0. This mismatch causes the residual error,
which is larger than that of the full-band adaptive filters.
In the latter case, the virtual bandpass filter does not appear.



4. RELAXING METHODS FOR NONCAUSAL
CONDITION

4.1. Inserting Time Delay

In order to reduce the impulse response in the negative time
domain, h(n) is shifted toward the positive time domain by
inserting time delay just before or after the unknown sys-
tem, ”plant” in Fig.1.

Let time delay be D samples, h(n) is shifted as h(n −
D). ãi(n) is changed as

ãi(n) →
n−D∑

m=−∞
bi(m)h(n − D − m)

→ ãi(n − D) (14)

Thus, ãi(n) is also shifted toward the positive time axis, and
the ratio of ãi(n − D) in the negative time domain can be
reduced.

The part of ãi(n −D) in the negative time domain can-
not be approximated by the causal filters. Thus, the error is
estimated as follows:

Edelay = 10 log

∑−1
n=−∞ ã2

i (n − D)∑∞
n=−∞ ã2

i (n − D)
dB (15)

Since ãi(n) with high-Q poles spreads over in a wide range,
the error in the sub-bands, which include high-Q poles, are
dominant in the total error.

4.2. Oversampling Methods

The other method is to set fsl higher than 2B. In this case,
there exist split bands between the sub-bands. Although
Bi(z) is required to have the unity amplitude and the zero
phase responses in the sub-band Ωi, it can take arbitrary
amplitude and phase responses in the split bands.

Bi(z) =




1 ω ∈ Ωi

Arbitrary ω ∈ split bands
0 ω ∈ Ωj i �= j

(16)

Let bsub
i (n) and bsplit

i (n) be impulse responses for Bi(z),
ω ∈ Ωi and ω ∈ split bands, respectively.

bi(n) = bsub
i (n) + bsplit

i (n) (17)

bsub
i (n) distributes in the same range compared with using

fsl = 2B. bsplit
i (n) can be asymmetrical and its main part

can be shifted toward the positive time domain by adjust-
ing the amplitude and phase responses of Bi(z) in a learn-
ing process. Totally, the component of bi(n) in the nega-
tive time domain can be reduced. Since the unknown sys-
tem is causal, that is h(n) = 0, n < 0, the component of
ãi(n), n < 0 is determined by that of bi(n) in the negative
time domain.

5. SIMULATION

The following conditions are used. M = 6, K = 4, fsl =
2B. Figure 3 shows amplitude responses of the unknown
system and the analysis filter bank. One example of the
optimum sub-band adaptive filters is shown in Fig.4. The
number of taps of the full-band adaptive filter and sub-band
adaptive filters are 160 taps and 40 taps×6bands =240 taps.
Figure 5(a) shows an envelope of the impulse response bi(n).
It symmetrically spreads over the negative and positive time
axises. h(n) is shown in Fig.5(b). Furthermore, ãi(n) and
its delayed versions with D = 50 and D = 100 are shown
in Fig.6. From this figure, the original ãi(n) spreads over
the negative time axis. However, that of the delayed version
is well reduced.

Figure 7 shows the learning curves for using no time de-
lay (MSE � −25dB) and 1200 sample time delay (MSE �
−65dB). The result using time delay is almost the same as
that of the full-band adaptive filter. In this example, the time
delay of the several hundred samples is enough.

Next, the oversampling method is examined. The down
sampling rate is set to K = 3 and K = 2. Thus, fsl is
increased from 2B to 8B/3 and 4B, respectively. Figure
8 shows ãi(n) with K = 4 and K = 2. It is confirmed
that the component of ãi(n) in the negaive time domain is
well reduced for K = 2. The learning curves for K =
3(MSE � −40dB) and K = 2(MSE � −65dB) are
shown in Fig.9. The convergence speed is a little slower,
however, the final error for K = 2 is almost the same as
using the time delay.
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Fig. 3. Amplitude responses of H(z) and Fi(z).
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Fig. 6. ãi(n) and its delayed versions with D = 50 and
D = 100.

6. CONCLUSIONS

In this paper, it has been cleared that the ideal sub-band
adaptive filters are noncausal. This property has been an-
alyzed by introducing the virtual bandpass filter. Two kinds
of methods to relax the noncausal condition have been in-
vestigated. One of them is to insert time delay in serial to
the unknown system and the other is to set the sampling rate
in the sub-bands high. The noncausal property and useful-
ness of the relaxation methods have been confirmed through
the simulation.
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