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Abstract

This paper investigates the performance of a multi-point
noise controller combined by individual single-output
noise controllers. The convergence and residual error
of multi-point noise controller are mainly investigated
based on the cross-connection matrix Cpr(z) which de-
notes the transfer functions from the output of each
adaptive filter to every noise cancelling point. The rela-
tion between the optimum solution of adaptive filters and
cross-connection matrix Cpr(z) is deduced. The influ-
ence of non-diagonal components C; x(2)(i # k) on the
convergence and residual error is investigated through
computer simulation. The following results are achieved.
The optimum solution can be obtained as long as Cpr(z)
is not singular. In the case of that C;x(2)(: # k) is in
proportion to Cy x(z), adaptive filters converge slowly
when the ratio r (0 < r < 1) increases. But the residual
errors are almost the same. In the case of C; x(2)(i # k)
is different from proportion to Ci x(2), in order to obtain
the same noise cancelling effect, more number of taps is
needed when C; (z)(i # k) is far different from Cy 1 (2).

1 Introduction

A single-output noise controller has been well discussed.
By using an adaptive filter and a loudspeaker, a dupli-
cate of noise is generated which has same magnitude and
opposite phase with original noise at a cancelling point.
The noise can be canceled at the location of the can-
celling point by interaction of duplicate noise with origi-
nal noise. The adaptive filter is adapted to minimize the
noise of the cancelling point.

In order to cancel noises in locations of L individual
points, such as cancelling the engine noise at every site of
a car, or a helicopter etc., a multi-point noise controller is
needed. One simple construction of a multi-point noise
controller is' performed by combining individual single-

output noise controllers. It is known that the indepen-
dent single-output noise controllers may fight each other
in an attempt to minimize residual noise at one location
without regard to other locations. However, the effect
and the limitation of the individual single-output noise
controllers used for multi-point active noise controller are
not well investigated [1-4]. In this paper, we investigate
convergence and residual error of multi-point noise con-
troller based on the cross-connection from the output of
each adaptive filter to every noise cancelling point.

2 Multi-point Noise Controller

2.1 Construction and Optimal Solution
of Multi-point Noise Controller

The construction of individual single-output noise con-
trollers used for multi-point active noise controller is
shown in Fig.1l. Where x denotes a noise source, e,
.-+, e, residual errors at cancelling point 1, ---, L, yi,
.-+, yrL, outputs of adaptive filters. H denotes paths
from the noise source to the points where the noise
needed to be cancelled, W, L individual adaptive fil-
ters, Crr, cross-connection matrix from adaptive filters
to cancelling points.
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Figure 1: Constructure of multi-point noise controller
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In z domain, the residual errors of n points are ex-
pressed by

Ei(z) = [Hi(2) = Ca(z)Wi(2) = Cia(2)Wa(2) -

= CiL(2)Wi(2)]1X(2) (1)
(i=1,2,---,L)
When residual errors E1(2), -+, EL(2) equal zero, the

optimal solution of individual adaptive filters is given by

-1

Wl(z) Cn(z) C1L(Z) Hl(z)
W) \eu . Cu) HL’(z)( |
2
Equation (2) can be briefly written as
WL(Z) = CLL(Z)—IHL(Z) (3)

The optimal solution of individual adaptive filters ex-
ists'only when Crr(z) is not singular. We will discuss
how convergence and residual errors change dependent
on cross-connection matrix Cpr(z) in the following sec-
tion.

3 Computer Simulation and Dis-
cussion

In order to simplify the problem but not to lose general-

ity, we will mainly discuss a 2-point case and expand it

to a L-point case in computer simulation. The model of

a 2-point noise controller is shown in Fig.2. In a 2-point

case, the optimal solution of individual adaptive filters
Hl(z)

is given by
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Figure 2: Model of 2-point noise controller
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3.1 Adaptive Algorithm

Normalized LMS adaptive algorithm is used to update
tap weight of transversal adaptive filter. The residua)
error at point i (i=1,---,L) is '

ei(n) = di(n) = x7 (n)wi(n) )
The tap weight of adaptive filter is updated by
wi(n+1) = wi(n) + mx(n)e;(n) (6)
x(n) = [z(n), z(n-1), ... z(n=M+ )T
wi(n) = [wi(n), wiz(n), ... wipm (n)]T
Ix(n)]]? = zX(n)+zi(n—-1)+...
+

3 (n—- M +1)

Where, o is a step size parameter, 3 is a small constant
and M is a number of taps. x(n) and e;(n) denote tap in-
put vector and residual error at time n. ||x(n)||? denotes
the power of the input vector. In the following simu-
lation, noise source z(n) is white noise. a=0.1,4=106
and M = 15 for each adapter filter.

3.2 Evaluation of noise cancellation

Effect of noise cancellation is evaluated by the average

mean square errors E;(m)(i = 1,---,L). E;(m) is de-
fined by
1 mMo
Ei(m) = 10logiolz= > le(m)] ()
n=(m-1)Mo+1
(i=la21 m=1)2)"' mMOSN)

Where, N is the total iterations. E;(m) denotes the aver-
age mean square error in every M iterations. Mg = 20
in the simulation.

3.3 The optimal tap weights of adaptive
filters

The converged tap weights of adaptive filters w;;(n)(i =
1,2,7 = 1,--- M) are defined by the average value of
wij(n)(i =1,2,j = 1,--- M) in the last S iterations.

N
1 . .
w;j=§ Z w;j(n) (i=1,2 ]:1,~-,M) (8)
n=N-S5+1

Where N denotes the total iterations. S = 1000 in
the simulations. The theoretical optimal tap weights
w;(i=1,2) are obtained by inverse z transfer of Eq.(2):

3.4 Transfer function of noise paths

Several different noise paths have been used in the simu-
lations. One of them is shown in Fig. 3. H(z) and Hy(2)



denote the transfer function of noise paths from the noise
source to cancelling points A and B, respectively. Ci;(2)
denotes the transfer function from the output of adap-
tive filter 1 to cancelling point A, and Cz2(z) denotes the
transfer function from the output of adaptive filter 2 to
cancelling point B. C3;(z) denotes the transfer function
of the output of adaptive filter 1 to the cancelling point
B and C)3(z) denotes the transfer function of the output
of adaptive filter 2 to the cancelling point A.

We will discuss how the frequency characteristics of
Cik(2)(i # k) affect the residual errors of cancelling
points in following sections.
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Figure 3: Magnitude-frequency response of H(z) and
Ha(z2)

3.5 Cu(z)(i # k) is in proportion to Cik(z)

In this case, the transfer function from the output of k-th
adaptive filter toi-th (i = 1,---,1 # k) error microphone
is in proportion to the transfer function from the output
of k-th adaptive filter to k-th error microphone. The
ratio r satisfies the condition of 0 < r < 1. Figure 4
shows frequency characteristics of Cy1(2), C22(z) and the
product of Cy;(z) and Ca2(z). C21(z) and Ciz(2) are in
proportion to Ci1(z) and Caa(2).

1.0

....

Magnitude
o
(¢.]

Cii(=)Caa(2)

0

0 01 02 03 04 0.5fs
Frequency

Figure 4: Frequency characteristics of Cy1(z) and Cs2(2)
Figure 5 shows the mean square error when r=0, 0.5,

0.8, 0.9, respectively. First, we can see, mean square er-
ror converges slowly when r increases. This is because
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when r = 0, cross-connection matrix Cr(z) is a diago-
nal matrix, that means that there is no cross-connection
among every individual adaptive filter. Each adaptive
filter performs as same as in single-point case. Equa-
tion 4 corresponds to two independent individual noise
controlling problems. The result is as same as one-point
noise controller. When r # 0, there is cross-connection
among every individual noise controller, and the individ-
ual adaptive filters may fight each other in an attempt to
minimize residual noise at one location without regard
to other locations. As a result, adaptive filter converges
more slowly when r increases. When r = 1, The de-
nominator of Eq. 4 is zero. Cpr becomes singular, the
solution of adaptive filters do not exist. Residual errors
diverged in the simulation are not shown here.
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Figure 5: Meansquare errors
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Figure 6: Tap weight vectors when r=0

From Fig. 5, we also can see that the mean square er-

rors converge to -110dB whatever the value of r is. That
means after convergence, the residual error is indepen-
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Figure 7: Tap weight vector when r=0.9

dent to cross-connection Cig,i # k. Figure 6 and Fig.
7 show that the converged tap weight of adaptive filters
wi, wo when r = 0 and r = 0.9. Solid lines denote theo-
retical values and dot lines denote the simulation results.
In fig.6, the solid line overlaps dot line. We can see 15
taps is enough for adaptive filter 1 and 2 in cases of dif-
ferent r, so that the residual errors can converge to same
value.

3.6 Ci(z) (1 #k) is different from Cii(2)

In the case of Ciix(z) (i # k) different from Ci(z), the
transfer function from the output of k-th adaptive filter
to i-th (i = 1,---,i # k) error microphone is different
from the transfer function from the output of k-th adap-
tive filter to k-th error microphone. In order to sim-
plify the discussion, the product of Cji(z) and Cyz(2)
is shown in Fig. 8. the product of Cy;(z) and Cia(z)
for four different cases a, b, ¢, d are shown in Fig. 8.
The magnitude of a, b, ¢ and d is half of magnitude of
C11(2)C22(2). Hy(2) and H,(z) are same as in Fig. 3.
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Figure 8: Frequency characteristics of Cy;(2z)C12(z) and
Cu(z)ng(z)

Figure 9 shows mean square error corresponding to the
cases a, b, ¢, and d. We can see that residual errors in-
crease according to the order of ¢, d, b, a. Mean sqare
error is smaller in the case of ¢ and d than the cases of
a and b. The frequency components of Cy;(2)C13(z) are

31.94

allincluded in the frequency components of Cu(Z)sz(z)
in the cases of ¢ and d, but not in the cases of a and b.
Residual error increase when the frequency correspond-
ing to the maximum magnitude of C3,(z)C12(2) are far
different from that of C1,(2)C22(2).
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Figure 9: Mean square errors
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Figure 10: Theoretical tap weights in the case of ¢
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Figure 11: Theoretical tap weights in the case ofa

This is because that the necessary number of taps of




adaptive filter increases when the frequency correspond-
ing to the maximum magnitude of Cs1(2)C)2(2) are far
different from that of C;;(z)C22(z). The theoretical tap
weights of adaptive filters w) and w3 in the cases ¢ and
a are shown in Fig.' 10 and Fig. 11. In the case c,
the theoretical numbers of taps of w; and w; are less
than 15, so that the residual errors of point A and B can
converge to -110dB. But in the case a, the theoretical
numbers of taps of w; and w, are more than 150 and
250 taps, respectively. M = 15 is not enough for both
adaptive filters, so that the residual errors of point A

and B converge to a large value, -40dB.

The residual errors can be further reduced by increas-
ing the number of taps of adaptive filters in the cases
a, b, c and d. Figure 12 shows the mean square error
of point A and B in the case of a, when the number of
taps are 150, 300 and 400, respectively. Figure 12 shows
the residual errors decrease when the number of taps in-
crease. It means that more number of taps is needed

when C;(2) (i # k) is far different from Cix(2).
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Figure 12: Mean square errors

4 Conclusion

The performance of individual single-output noise con-
trollers used for multi-point active noise controller has
been investigated in this paper. Generally speaking, the
optimal solution of each individual adaptive filter can
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be obtained as long as cross-connection Cp(z) is not
singular. In the case of that Cix(2) (i # k) is in propor-
tion to Cik(z), residual error can converge to same value
as long as the number of taps is enough for different r.
But adaptive filter converges slowly when r increases. in
the case of that Cix(z) (i # k) is different from Cyi(z2),
more number of taps is needed when Cix(z) (i # k) is

far different from Cprx(z) in order to get same cancelling
effect.
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