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��������— This paper proposes a lattice predictor

based adaptive Volterra filter (Lattice-AVF), and its

convergence property is analyzed. In the adaptive FIR

Volterra filter (AVF), the eigen value spread of a cor-

relation matrix is extremely amplified, and its con-

vergence is very slow for gradient methods. A lattice

predictor is employed for whitening the input signal.

For stationary colored input signals, the Lattice-AVF

can provide a fast convergence and the well reduced

residual error. Its convergence is highly dependent on

a time constant, used in updating the reflection coeffi-

cients. A very large time constant is required. In the

case of nonstationary colored input signal, the eigen

value spread after the Volterra polynomial is not so

highly amplified. This means fast convergence will be

expected, and effects of the whitening will be small.

These properties are analyzed. A problem of asyn-

chronous updating the reflection coefficients and the

filter coefficients observed in linear lattice predictor

based adaptive filters, is also observed in the Lattice-

AVF.

I. Introduction

Laud speakers in audio systems and small speakers em-
bedded in a mobile phone have some nonlinearity. When
they are used in a remote conference system and as a visual
phone, where some echo are caused and are transmitted
through such nonlinear parts, nonlinear echo cancellers are
very important [1],[2].

An adaptive FIR Volterra filter (AVF), which combines
an FIR filter and a Volterra polynomial, which can express
general nonlinearity, is one of hopeful candidates [3],[4].
However, the Volterra polynomial generates a huge num-
ber of terms, and the same number of filter coefficients are
required. Furthermore, eigen value spread of a correlation
matrix for the input signal is extremely amplified after the
Volterra polynomial, and convergence becomes very slow
for gradient methods.

Convergence property of AVFs has been analyzed, and
some fast and stable learning algorithms have been pro-
posed [5],[6]. One approach to fast convergence is orthog-
onalization of the input signal [7],[8],[9],[10]. However, the
DCT is not sufficient for orthogonalization. A linear pre-
diction error filter is good for orthogonalization. However,
it requires some time delay, and cannot be applied to some
applications, such as echo cancellers [11].

In this paper, in order to improve the orthogonalization
process without any time delay, a lattice prediction error
filter is employed for this purpose. In linear lattice predic-
tor based adaptive filters [12], a problem of asynchronous

update of the reflection coefficients and the filter coeffi-
cients is pointed out, and the residual error is not well
reduced. A synchronization method has been proposed
[13],[14]. In this paper, this asynchronous problem is an-
alyzed. Convergence properties for stationary and non-
stationary colored signals are analyzed. Several kinds of
structures for orthogonalization of the input signals are
taken into account. Convergence property is compared
with the DCT based and the linear predictor based adap-
tive filters.

II. Adaptive FIR Volterra Filter

A. Structure of AVF

Figure1 shows a blockdiagram of an adaptive FIR
Volterra filter (AVF). When a second-order Volterra poly-
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Fig. 1. Adaptive FIR Volterra filter.

nomial is used, the output y(n) is given by

y(n) =
N−1∑

i=0

w1(i)x(n − i)

+
N−1∑

j=0

N−1∑

k=0

w2(j, k)x(n − j)x(n − k) (1)

w2(j, k) = w2(k, j) (2)

B. Eigen Value Spread Amplification by Volterra Polyno-
mial

The eigen value spread χ = λmax/λmin of a correlation
matrix for the input signal x(n) is extremely amplified by
transforming the signals through the Volterra polynomial.
Examples are shown here. A 50 tap FIR filter and a 2nd-
order Volterra polynomial are used. The number of terms
in the Volterra polynomial is 1325. Samples of the colored
input signal x(n − i) with χ = 780.9 is transferred into



the Volterra polynomial terms x(n − i)x(n − j) having
χ = 657100, which is 841 times as large as that of x(n).
For this reason, convergence of the AVF is very slow for
gradient methods.

C. Orthogonalization of Input Signal

1) Discrete Cosine Transform: The DCT with nor-
malization [10] is used for comparison. The outputs
of the tap delay line x(n) = [x(n), x(n − 1), .., x(n −
N + 1)] are transformed through the DCT to q(n) =
[q0(n), q1(n), .., qN−1(n)], and they are normalized by its
standard deviation σq,i, resulting in the outputs si(n).
si(n) are applied to the Volterra polynomial generating
1st-order and high-order terms. These terms are multi-
plied by filter coefficients, and are accumulated, resulting
in the final output y(n). The DCT does not need any time
delay. However, orthogonalization is not complete. The
adaptive Volterra filter with DCT is denoted ’DCT-AVF’
in this paper.
2) Linear FIR Prediction Error Filter: When the signal

can be modeled as the output of an AR circuit driven by
the white noise, a linear FIR prediction error filter is good
for whitening. However, it requires some time delay, and
its application is rather limited. The prediction error is
used as the AVF input. The adaptive Volterra filter with
the linear prediction error filter is denoted ’LP-AVF’ in
this paper.

D. Position of Orthogonalization in Nonlinear Filters

Two kinds of positions for the orthogonalization are
taken into account. They are at the input of only the
AVF, denoted Type-A, and at the input of both the un-
known system and the AVF, denoted ’Type-B’. In the case
of nonlinear adaptive filters, any time delay is not allowed
in Type-A. On the other hand, in Type B, any kinds of the
orthogonalization, with or without time delay, can be em-
ployed. However, since the output of the unknown system
may be sound from a laud speaker located in a conference
room, this type cannot be applied to some applications,
such as echo cancellation.

III. Lattice Predictor Based AVF

A. Circuit Structure

In practical applications, Type A is important. There-
fore, we employ the lattice prediction error filter [12] for
the orthogonalization process. The proposed lattice pre-
dictor based AVF (Lattice-AVF) is shown in Fig.2. Let
the number of taps of the FIR part be N , the order of
the Volterra polynomial be M , the order of the lattice
predictor be L. Assuming N > L, the number of filter
coefficients in both AVFs in Fig.1 and Fig.2 are the same.
If the unknown system can be modeled by using the FIR
Volterra filter, the same transfer function can be realized
by using the Lattice-AVF.

B. Reflection Coefficient Update

The reflection coefficients are updated by the following
equations [12].

κm(n) = − 2E[bm−1(n − 1)f∗
m−1(n)]

E[|fm−1(n)|2 + |bm−1(n − 1)|2] (3)

+ +

+ +

+ + +
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Fig. 2. Lattice predictor based AVF.

κN,m(n) = γκN,m(n − 1) + bm−1(n − 1)f∗
m−1(n)(4)

κD,m(n) = γκD,m(n − 1) + |fm−1(n)|2
+ |bm−1(n − 1)|2 (5)

0 < γ < 1

κm(n) = −2
κN,m(n)
κD,m(n)

(6)

C. Synchronization of Updating Reflection and Filter Co-
efficients

Convergence property of the linear lattice predictor
based FIR adaptive filter has been analyzed. Updating
the reflection coefficients and the filter coefficients are not
synchronized, and some error remain. The synchronized
learning algorithm has been proposed [13],[14], which is
briefly described here.

The linear adaptive filter with the lattice predictor is
equivalent to the circuit shown in Fig.2, except for the
Volterra polynomial block. The filter coefficients w(n) is
directly connected to b(n). The output y(n) is

b(n) = K(n)x(n) (7)
y(n) = wT (n)b(n) (8)

b(n) is a vector of the backward prediction error bm(n),
K(n) is a matrix consists of the reflection coefficients,
x(n) is the input, w(n) is the filter coefficients. In the
next iteration step, K(n) is updated to K(n + 1), and
y(n+1) and e(n+1) are generated by using K(n+1) and
w(n). However, w(n) is optimized for K(n) not K(n+1).
Therefore, e(n + 1) is not guaranteed to be reduced. For
this reason, w(n) is modified sa as,

b̃(n + 1) = K(n)x(n + 1) (9)
ỹ(n + 1) = wT (n)b̃(n + 1) (10)
b(n + 1) = K(n + 1)x(n + 1) (11)
y(n + 1) = wT (n)b(n + 1) (12)

ỹ(n + 1) can reduce the output error. Therefore, the filter
coefficients w(n) is modified as follows:

KT (n + 1)w̃(n) = KT (n)w(n) (13)

w̃(n) =
KT (n)

KT (n + 1)
w(n) (14)

w̃(n) is used in the next iteration n + 1, instead of w(n),
for generating ỹ(n+1) and ẽ(n+1). The filter coefficients



are updated to w(n + 1) by using ẽ(n + 1) and w̃(n). A
combination of K(n) and w(n) is equivalent to that of
K(n+1) and w̃(n). Thus, the output error is guaranteed
to be decreased.

The synchronization problem in the Lattice-AVFs is an-
alyzed in the next section.

IV. Simulation and Discussions

A. Stationary Colored Signal

The colored signal is generated by using a 2nd-order AR
model with the white input signal. A 50 tap FIR filter and
the 2nd-order Volterra polynomial are used. The number
of the terms in the Volterra polynomial is 1325.
1) DCT and Linear Predictor: The learning curves for

the AVF without whitening, and with the DCT process in
Type A and the linear prediction error filter in Type B are
shown in Fig.3. The NLMS algorithm and stepsize=0.1
are employed.
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Fig. 3. Learning curves for colored signal, without whitening, and
with DCT and linear prediction.

The DCT-AVF in Type-A can improve convergence to
some extent. The LP-AVF in Type-B is good, because the
whitening is complete.
2) Lattice-AVF with Fixed and Time Variant Reflection

Coefficients: Time invariant and time variant reflection
coefficients are taken into account. Also, they are deviated
from the ideal value following

κ(n) = κ0(1 + a) Time Invariant (15)
κ(n) = κ0(1 + a sin(2πn/1000)) Time Variant(16)

κ0 is the ideal reflection coefficients.
Figure 4 shows the learning curves of the Lattice-AVF. If

the reflection coefficients are set to the ideal, convergence
is fast and the residual error is very small. However, the
convergence is sensitive to deviation of the reflection coeffi-
cients. Assuming the output error of -50dB, 5% deviation
causes a long convergence time, which is 3 times as long
as the ideal case.

On the other hand, when the reflection coefficients are
time variant, convergence is trapped at -20dB, which is not
well reduced compared with the time invariant reflection
coefficients. This phenomenon is caused by asynchronous
update of the reflection coefficients and the filter coeffi-
cients, just the same as the linear lattice adaptive filters
[13],[14].
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Fig. 4. Learning curve for stationary colored signal by using Lattice-
AVF. Both time invariant and time variant reflection coefficients are
used.

3) Lattice-AVF with Updated Reflection Coefficients:
Figure 5 shows the learning curves, in which the reflec-
tion coefficients are updated following Eqs.(3) through (6).
Convergence highly depends on a time constant γ, which
control the reflection coefficient update. From Eqs.(4) and
(5), κN,m(n) and κD,m(n) can be regarded as the output
of a 1st-order lowpass filter, with a pole γ on the positive
real axis. Therefore, when γ(< 1) is very close to unity,
the pasband of the lowpass filter is very narrow, and the
output, that is the reflection coefficients are very slowly
changed. Untill γ = 0.999999, the convergence can be
improved. The learning curves for the lattice predictor
almost saturate around -50dB. However, it requires only
85,000 iterations until -40dB, while the DCT-AVF and the
LP-AVF need 320,000 iterations and 150,000 iterations as
shown in Fig.3, respectively.
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Fig. 5. Learning curve for stationary colored signal by using Lattice-
AVF.

B. Nonstationary Colored Signals

A time variant AR model is used for generating nonsta-
tionary colored signals. The pole, re±θ, of the AR model
is controlled by

r = 0.9 (17)

θ(n) =
π

4
(1 + a sin(

2πn

500
)) (18)

1) Lattice-AVF: Figure 6 shows the learning curves for
the Lattice-AVF with several γ. In this case, γ = 0.999999
is also useful.
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Fig. 6. Learning curves for nonstationary colored signal by using
lattice predictor with several γ.

Figure 7 shows the learning curves for the Lattice-AVF,
where a is changed as 0.05, 0.1 and 0.2. γ is set to
0.999999. The learning curves are almost the same as
in Fig.5, where the AR model is fixed. From these results,
the Lattice-AVF is useful for nonstationary input signals.
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Fig. 7. Learning curve for nonstationary colored signal by using
Lattice-AVF, where a is changed.

2) Comparison among Lattice-, DCT- and LP-AVFs:
Figure8 shows learning curves by using the Lattice-AVF,
the DCT-AVF and the LP-AVF. In this figure, ’Station-
ary’ and ’Nonstationary’ mean ’Without orthogonaliza-
tion’. A typical feature is recognized. Convergence is im-
proved for nonstationary colored signal, even though the
orthogonalization is not used. In the case of nonstation-
ary colored signal, the eigen value spread of the correlation
matrix of x(n− i)x(n− j) is not so amplified from that of
x(n − i) compared with stationary colored signal.

In the case of nonstationary colored signal, the Lattice-
AVF still provide fast convergence. Convergence of the
LC-AVF is slow, while it can reach the more reduced error.
However, the LC-AVF is limited to Type-B.

V. Conclusions

In this paper, the Lattice-AVF has been proposed. Its
convergence is highly dependent on the time constant used
in updating the reflection coefficients. The asynchronous
update of the reflection coefficients and the filter coeffi-
cients has been observed. Convergence of AVF for nonsta-
tionary colored signal is better compared with stationary
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Fig. 8. Learning curves for nonstaionary colored signal by using
methods, including without whitening, DCT, linear predictor, and
lattice predictor.

colored signal. The Lattice-AVF can provide fast conver-
gence and well reduced error.
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