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Abstract— The Perceptron learning algorithm for
linear dichotomies can be regarded as the LMS algo-
~ithm which is one of the most popular algorithms for
.ransversal filters. The normalized LMS (N-LMS) al-
gorithm is one of the improved versions of the LMS
algorithmi for transversal filters and we apply it to lin-
ear dichotomies. In this paper, the proof of the conver-
gence of the N-LMS algorithm for linear dichotomies
in a finite number of iterations when the learning co-
efficient p is unity, and the sufficient condition of u for
the convergence are given.

I. Introduction

In the field of adaptive filters, a linear filter called a
transversal filter which outputs

y=xz'w€eR (1)

where = and w are the input and weight vectors of
the filter, respectively, is most widely used. The least
mean square (LMS) algorithm is the most popular for
a transversal filters and it changes the weight vector

s much as .
Aw = px(d — z'w), (2)

where p and d are the learning rate and the desired
output, respectively, and then (d — ='w) means the
output error. The LMS algorithm converge in proba-
bility when and only when 0 < g < Apax Where Xmax
is the largest eigenvalue of the auto-correlation matrix
$[1]. that means that we cannot say the learning rate
which guarantees the convergence when I is unknown.
The improved version at this point is the normalized
LMS (N-LMS) algorithm shown as

Aw = pa(d - z'w)/[l=]?, (3)

where Aw does not depend on ||z|| and the conver-
gence condition is simply 0 < p < 2[1, 3]
A linear dichotomy called a Perceptron

y = sign [z'w], (4)

on the other hand, consists of a transversal filter and a
sign function sign [-] and is often used as an element of

neural networks. Since the Perceptron learning (PL)
algorithm is written as

Aw = %:c ( sign.[:n'wo] — sign [z'w]) (5)

where w, is the true parameter, the PL algorithm can
be regarded as an application of the LMS algorithm to
a linear dichotomy. Because the PL algorithm ignores
the magnitudes of = and w, its convergence speed is
sometimes slow (Fig.1), though it is guaranteed in a fi-

.nite number of iterations[4, 5]. In Fig.1, the shadowed

b) x is too large
Fig.1 Perceptron Learning Algorithm in Parameter
Space

parts means the set of parameters which output the
true sign for the given examples and the arrows show
the changes of the weight vector. From the analogy of
the LMS algorithm and the N-LMS algorithm, we can
improve the PL as

Aw = 2zt w/|z|? (6)

which we call the N-LMS algorithm for linear di-
chotomies. Asshown in Fig.2, the algorithm above be-
comes the projection onto and the symmetry with the
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hyperplane z'w = 0 when p = 1/2 and u = 1, respec-
tively, that means that the N-LMS algorithm for linear

WiAW

x w=0

Fig.2 Geometrical view of the N-LMS algorithm

dichotomies is a special case of the orthogonal projec-
tion algorithm or the geometric learning algorithm[2]
where the block signal processing techniques are ap-
plied to the orthogonal projection algorithm.

The Perceptron learning algorithm is guaranteed to
stop in a finite number of iterations by Perceptron
Convergence Theorem[4, 5]. On the other hand, the
conditions for the convergence of the N-LMS algorithm
has been little studied though the difference of their
convergence conditions is worth being studied because
it shows the effects of the normalization of the input
vectors. It also elucidates the influences of the nonlin-
ear element sign[] by comparing with the condition
of transversal filters’ case.

Another property of the N-LMS algorithm for lin-
ear dichotomies is that it is free from the effects of
the normalization of the weight vector. If the weight
vector normalization is applied to the PL algorithm,
its convergence is no longer guaranteed as shown in
Fig.3. In this case, the weight vector A changes to B

Fig.3 An example that the PL algorithm does not
converge (in case of 2-D inputs and 2 given examples)

by one example ®; and then to C by the normaliza-
tion. Next, the other example x5 carries C to D and
the normalization makes D to return to A.

The problem about the convergence conditions of

the N-LMS algorithm for linear dichotomies has been
studied for the special case of 2-D inputs and 2 given
examples(2], however, the results can not be straight-
forwardly applied to general cases. This paper proves
that the N-LMS algorithm stops in a finite number of
iterations when the learning rate 4 = 1 and gives a
sufficient condition of y for convergence.

II. The N-LMS Algorithm Convergence
Theorem

Compared with that the optimal weight of a transver-
sal filter is a point where the mean squared error is
minimized, the set any weights in which output the
same signs as the true weight has area which we call
admissible the consistent area. This is the largest dif-
ference between them and it affects their convergence
properties of the N-LMS algorithms. The weight of a
transversal filter gradually approaches to the optimal
point when 0 < x4 < 2 but never reaches to the optimal
because its convergence is probabilistic. The weight of
a linear dichotomy, on the other hand, reaches the con-
sistent area and stops at there when p = 1. We prove
it in the following.

We denote the ith given example i.e. the pair of the
input vector and the output by z; and y;, respectively.
Since the true output for —z; is +1 when that for z;
is —1, we assume that the output y; is always positive
and call z; itself the ith example. And the magnitude
of x; does not affect the learning, ||z;|| = 1 is also
assumed. Then, the domain of =; becomes a half of
m — 1 dimensional hypersphere S™~!

Sy = {zilziw, > 0,z € S™1} . (7)

where w, is the true weight vector.
When p examples z;,i = 1,...,p are given, the con-
sistent area D is defined as

D= {wlzgiw >0,i=1,...,p}. (8)

Any weight w in D gives the same output as w, for ;.
Because an example x; which satisfies z{w < 0 is used
for the learning, the learning stops when w € D. Now
we start to prove that the N-LMS algorithm stops in a
finite number of iterations when p = 1 using the math-
ematical induction. Since w moves symmetrically with
the hyperplane @jw = 0 when p = 1 and =; is given,
the magnitude of w does not change. So, we assume
that ||w|| is always unity, therefore, w € §™~!. Then,
D is a polyhedron on §™~!. e denote a weight in D
by w* and the angle between w* and z; by 7/2 — 6;,
respectively.

First, we prove that in the 2-dimensional case of
w. As shown in Fig.4, the learning by x; makes the
angle between w + Aw and w* 26; smaller than that
between w and w*. Therefore, the learning stops in a
finite number of iterations.
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Fig.4 The N-LMS algorithm (2-dimensional case)

Next, we assume that the theorem is true when
m < k and show that it holds even when m = k+1 us-
ing reductive absurdity. It is assumed that w does not
enter D in a finite number of iterations. Then, there
is at least one example which must be applied infinite
times, which we denote by z;,i = 1,...,p’. Because
z;,i = p' +1,...,p are applied only a finite times,
we consider that the learning by them already finished
andonly z;,i = 1,...,p’ are used. The learning by z;
whose angle with w* is 7/2 — 6; increases w’s compo-
nent.of w* direction esin#;. Since w is constant, this
means that the angle between w and w* decreases.. So,

¢ has to approach to 0 in order that w does not enter -

the consistent area D, i.e. w(>c) must be on z{w = 0.
Therefore, X = span(z;,i=1,....p') = R™, m <
k 4+ 1 because w(oc) = Oky4q contradicts ||w|| = 1if
X = RF*!. Since the N-LMS algorithm adds w a
vector proportional to ;, it does not change w’s com-
ponent orthogonal to X. So, we divide w to w’ + wt
where w’ € X and wt LX. We denote the consistent
area in X which made by z;,i = 1,...,p' by D'. So,
since X is a k or less dimensional space, w’ enter D’
in a finite number of iterations and then z{w’ > 0
for any i. Since zlw = zlw’,i = 1,...,p’ and then
zlw>0,i=1,...,p.x;.i=1,....,p' can not be used
for learning any more. From the assumption that the
learning by x;,i = p’ + 1....,p finishes, the learning

has to stop. which contradicts the assumption that w
does not enter D in a finite number of iterations.

III. Conditions of the Learning Rate for
Convergence

In the previous section, the N-LMS algorithm con-
verges when p = 1. Then, does u have to be unity?
In this section, we give a sufficient condition of y for
convergence. It is shown as an interval which includes
unity but dependé on the given examples, which means
that u = 1 is best for applications.

If the learning by x; decreases the angle between w

and w* € D, the convergence in a finite number of
iterations can be shown in the same way as uy = 1. So,
we derive the interval of u4 where the angle necessarily
decreases. \We separately consider the 2-dimensional
space 11" spanned by w*, ; and its complement 11°L,
When w € 11", consider a circle whose radius is ||w||

Fig.5 View in the case that w € span(w*,z;)

and define ¢ and v’ as the angle between —w* and
w and that between —w* and w + Aw, respectively,
as shown in Fig.5. When —6; < ¢ < 0,if p > 0
then ¢/ > 0 and ¢/ > ¢. When 0 < ¢ < w/2 — 6,
if the terminus D of the vector w + Aw is on the
half line AC then ¢’ > ¢ holds. Here, consider that
AD is proportional to y and D coincides with B when
p = 1/2, and then it is derived that ' > ¢ if u/(1/2)
is bigger than AC/AB, that is,

[sin(¢ + 6;) + cos(y¢ + 6;) tan( — 6;)] / sin(¥+6;) <
(©)

So, the condition of p for ¢ < ¢/ for any ¥ is Therefore,
if 6; < 7/4 then

RS

1 tan(w/4 — 6;)
= |y 2R 0 0
RN ey ey 90] (10)
1+ tan’#;
~ (14 tané;)? (11)

and if /4 < 6; < w/2 then p > % In the same way, it
is derived that if §; < 7/4 then

< 1+ tan?6;
# (1 — tan 9;)"7

(12)

and if 7/4 < 6; < w/2 then p > 0. Because the
conditions above has to hold for any ;. they can be
concluded that if 8* < 7/4 then

1+ tan?6*
(1 - tanf*)?’

1+ tan?6*
(1 +tan6*)?

<p< (13)
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and if 7/4 < 6* < /2 then p > 1 where w* is such
that maximizes min; §; and 6° is the minimum. We
call the above Condition I

Next, we consider the case w € 11", Instead of the
angle between a vector and w*, We evaluate a nor-
malized vector’s component of w* direction, i.e. the
increase of the component is equivalent to the decrease
of the angle. w can be divided as w = w’ +w* where
w' € W and wt L1¥ and then the learning by z; does
not change w. Therefore, the projections of w and
w+Aw onto 1V are shown as in Fig.6 where the center
and the radius of the circle are the origin and [|w'||, re-
spectively. When g < 1, since w’ + Aw denoted by B

Fig.6 View in the case that w ¢ span(w*,z;)

(or B') exists within the circle and ||w'|| > ||w’+Aw]|,
the component of 7'+ in w-:?sw (w + Aw) whose
magnitude is normalized as much as that of w is more
than that of w+Aw. Therefore, its projection onto 1
is on [ (or I'), more precisely, between B (or B') and C
(or C'). If u satisfies Condition I, the angle between [
(or ") and w* necessarily decreases, the component of
w* direction in any point on BC (or B’C’) increases,
that is, the angle between w+ Aw and w* is less than
that between w and w*. In the same way, the above
is easily proven even in the case of u > 1.

Because Condition I depends on an angle * which
is given by the examples and a parameter w* in the
consistent area, the learning rate g must be 1 from the
practical point of view.

IV. Conclusion

From the analogy of the Perceptron learning algorithm
and the LMS algorithm, the N-LMS algorithm can be
applied to linear dichotomies. This paper gives its
convergence properties, especially proves that the al-
gorithm stops in a finite number of iterations when
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p = 1. Besides, a sufficient condition for convergence
is given which is an interval which includes unity. The
results are contrastive with the transversal filter’s case
(0 < p < 2) or the perceptron’s case (any positive
number).
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